Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurochem ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38317026

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by clinical symptoms of memory and cognitive deficiencies. Postmortem evaluation of AD brain tissue shows proteinopathy that closely associate with the progression of this dementing disorder, including the accumulation of extracellular beta amyloid (Aß) and intracellular hyperphosphorylated tau (pTau) with neurofibrillary tangles (NFTs). Current therapies targeting Aß have limited clinical efficacy and life-threatening side effects and highlight the need for alternative treatments targeting pTau and other pathophysiologic mechanisms driving AD pathogenesis. The brain's extracellular matrices (ECM), particularly perineuronal nets (PNNs), play a crucial role in brain functioning and neurocircuit stability, and reorganization of these unique PNN matrices has been associated with the progression of AD and accumulation of pTau in humans. We hypothesize that AD-associated changes in PNNs may in part be driven by the accumulation of pTau within the brain. In this work, we investigated whether the presence of pTau influenced PNN structural integrity and PNN chondroitin sulfate-glycosaminoglycan (CS-GAG) compositional changes in two transgenic mouse models expressing tauopathy-related AD pathology, PS19 (P301S) and Tau4RTg2652 mice. We show that PS19 mice exhibit an age-dependent loss of hippocampal PNN CS-GAGs, but not the underlying aggrecan core protein structures, in association with pTau accumulation, gliosis, and neurodegeneration. The loss of PNN CS-GAGs were linked to shifts in CS-GAG sulfation patterns to favor the neuroregenerative isomer, 2S6S-CS. Conversely, Tau4RTg2652 mice exhibit stable PNN structures and normal CS-GAG isomer composition despite robust pTau accumulation, suggesting a critical interaction between neuronal PNN glycan integrity and neighboring glial cell activation. Overall, our findings provide insights into the complex relationship between PNN CS-GAGs, pTau pathology, gliosis, and neurodegeneration in mouse models of tauopathy, and offer new therapeutic insights and targets for AD treatment.

2.
World J Gastroenterol ; 29(33): 4991-5004, 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37731997

ABSTRACT

BACKGROUND: The increased prevalence of inflammatory bowel disease (IBD) among patients with obesity and type 2 diabetes suggests a causal link between these diseases, potentially involving the effect of hyperglycemia to disrupt intestinal barrier integrity. AIM: To investigate whether the deleterious impact of diabetes on the intestinal barrier is associated with increased IBD severity in a murine model of colitis in mice with and without diet-induced obesity. METHODS: Mice were fed chow or a high-fat diet and subsequently received streptozotocin to induce diabetic-range hyperglycemia. Six weeks later, dextran sodium sulfate was given to induce colitis. In select experiments, a subset of diabetic mice was treated with the antidiabetic drug dapagliflozin prior to colitis onset. Endpoints included both clinical and histological measures of colitis activity as well as histochemical markers of colonic epithelial barrier integrity. RESULTS: In mice given a high-fat diet, but not chow-fed animals, diabetes was associated with significantly increased clinical colitis activity and histopathologic markers of disease severity. Diabetes was also associated with a decrease in key components that regulate colonic epithelial barrier integrity (colonic mucin layer content and epithelial tight junction proteins) in diet-induced obese mice. Each of these effects of diabetes in diet-induced obese mice was ameliorated by restoring normoglycemia. CONCLUSION: In obese mice, diabetes worsened clinical and pathologic outcomes of colitis via mechanisms that are reversible with treatment of hyperglycemia. Hyperglycemia-induced intestinal barrier dysfunction offers a plausible mechanism linking diabetes to increased colitis severity. These findings suggest that effective diabetes management may decrease the clinical severity of IBD.


Subject(s)
Colitis , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Hyperglycemia , Inflammatory Bowel Diseases , Humans , Animals , Mice , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Experimental/complications , Mice, Obese , Obesity/complications , Diet, High-Fat/adverse effects
3.
Front Integr Neurosci ; 16: 896400, 2022.
Article in English | MEDLINE | ID: mdl-35694184

ABSTRACT

Perineuronal nets (PNNs) are chondroitin-sulfate glycosaminoglycan (CS-GAG) containing extracellular matrix structures that assemble around neurons involved in learning, memory, and cognition. Owing to the unique patterning of negative charges stemming from sulfate modifications to the attached CS-GAGs, these matrices play key roles in mediating glycan-protein binding, signaling interactions, and charged ion buffering of the underlying circuitry. Histochemical loss of PNN matrices has been reported for a range of neurocognitive and neurodegenerative diseases, implying that PNNs might be a key player in the pathogenesis of neurological disorders. In this hypothesis and theory article, we begin by highlighting PNN changes observed in human postmortem brain tissue associated with Alzheimer's disease (AD) and corresponding changes reported in rodent models of AD neuropathology. We then discuss the technical limitations surrounding traditional methods for PNN analyses and propose alternative explanations to these historical findings. Lastly, we embark on a global re-evaluation of the interpretations for PNN changes across brain regions, across species, and in relation to other neurocognitive disorders.

4.
JPGN Rep ; 3(1): e173, 2022 Feb.
Article in English | MEDLINE | ID: mdl-37168762

ABSTRACT

Disorders of intestinal enteroendocrine cells (EEC) are a rare cause of congenital diarrhea and diabetes. The gene NEUROG3 is essential in EEC differentiation, and mutations in this gene lead to a paucity of EEC in the intestine and pancreas, often presenting clinically as congenital diarrhea and diabetes mellitus. We present the earliest known diagnosis of NEUROG3-associated enteric endocrinopathy, which was identified on a neonatal diabetes genetic panel sent at 4 weeks of age. Our patient presented with severe diarrhea, malnutrition, electrolyte derangements, and neonatal diabetes. He was started on parenteral nutrition at 3 months of age for nutritional and hydration support and required long-acting insulin for his diabetes. We demonstrate significant reduction in EEC, including cells expressing glucagon-like peptide-1, in intestinal biopsies from our patient, raising the possibility that loss of glucagon-like peptide-1 contributes to NEUROG3-associated diarrhea and diabetes mellitus. This case advances our understanding of the presentation, diagnosis, and management of this rare disease.

5.
Alzheimers Dement ; 18(5): 942-954, 2022 05.
Article in English | MEDLINE | ID: mdl-34482642

ABSTRACT

The extracellular matrix (ECM) of the brain comprises unique glycan "sulfation codes" that influence neurological function. Perineuronal nets (PNNs) are chondroitin sulfate-glycosaminoglycan (CS-GAG) containing matrices that enmesh neural networks involved in memory and cognition, and loss of PNN matrices is reported in patients with neurocognitive and neuropsychiatric disorders including Alzheimer's disease (AD). Using liquid chromatography tandem mass spectrometry (LC-MS/MS), we show that patients with a clinical diagnosis of AD-related dementia undergo a re-coding of their PNN-associated CS-GAGs that correlates to Braak stage progression, hyperphosphorylated tau (p-tau) accumulation, and cognitive impairment. As these CS-GAG sulfation changes are detectable prior to the regional onset of classical AD pathology, they may contribute to the initiation and/or progression of the underlying degenerative processes and implicate the brain matrix sulfation code as a key player in the development of AD clinicopathology.


Subject(s)
Alzheimer Disease , Brain/physiology , Chromatography, Liquid , Extracellular Matrix/chemistry , Humans , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...