Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Front Oncol ; 14: 1381467, 2024.
Article in English | MEDLINE | ID: mdl-38634043

ABSTRACT

The Keap1-Nrf2 signaling pathway is a major regulator of the cytoprotective response, participating in endogenous and exogenous stress caused by ROS (reactive oxygen species). Nrf2 is the core of this pathway. We summarized the literature on Keap1-Nrf2 signaling pathway and summarized the following three aspects: structure, function pathway, and cancer and clinical application status. This signaling pathway is similar to a double-edged sword: on the one hand, Nrf2 activity can protect cells from oxidative and electrophilic stress; on the other hand, increasing Nrf2 activity can enhance the survival and proliferation of cancer cells. Notably, oxidative stress is also considered a marker of cancer in humans. Keap1-Nrf2 signaling pathway, as a typical antioxidant stress pathway, is abnormal in a variety of human malignant tumor diseases (such as lung cancer, liver cancer, and thyroid cancer). In recent years, research on the Keap1-Nrf2 signaling pathway has become increasingly in-depth and detailed. Therefore, it is of great significance for cancer prevention and treatment to explore the molecular mechanism of the occurrence and development of this pathway.

2.
Bioorg Chem ; 145: 107212, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38377819

ABSTRACT

As a vital hallmarker of cancer, the metabolic reprogramming has been shown to play a pivotal role in tumour occurrence, metastasis and drug resistance. Amongst a vast variety of signalling molecules and metabolic enzymes involved in the regulation of cancer metabolism, two key transcription factors Nrf1 and Nrf2 are required for redox signal transduction and metabolic homeostasis. However, the regulatory effects of Nrf1 and Nrf2 (both encoded by Nfe2l1 and Nfe2l2, respectively) on the metabolic reprogramming of hepatocellular carcinoma cells have been not well understood to date. Here, we found that the genetic deletion of Nrf1 and Nrf2 from HepG2 cells resulted in distinct metabolic reprogramming. Loss of Nrf1α led to enhanced glycolysis, reduced mitochondrial oxygen consumption, enhanced gluconeogenesis and activation of the pentose phosphate pathway in the hepatocellular carcinoma cells. By striking contrast, loss of Nrf2 attenuated the glycolysis and gluconeogenesis pathways, but with not any significant effects on the pentose phosphate pathway. Moreover, knockout of Nrf1α also caused fat deposition and increased amino acid synthesis and transport, especially serine synthesis, whilst Nrf2 deficiency did not cause fat deposition, but attenuated amino acid synthesis and transport. Further experiments revealed that such distinctive metabolic programming of between Nrf1α-/- and Nrf2-/- resulted from substantial activation of the PI3K-AKT-mTOR signalling pathway upon the loss of Nrf1, leading to increased expression of critical genes for the glucose uptake, glycolysis, the pentose phosphate pathway, and the de novo lipid synthesis, whereas deficiency of Nrf2 resulted in the opposite phenomenon by inhibiting the PI3K-AKT-mTOR pathway. Altogether, these provide a novel insight into the cancer metabolic reprogramming and guide the exploration of a new strategy for targeted cancer therapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Proto-Oncogene Proteins c-akt/metabolism , Hep G2 Cells , Phosphatidylinositol 3-Kinases/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Metabolic Reprogramming , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Liver Neoplasms/genetics , Amino Acids/pharmacology
3.
Free Radic Biol Med ; 213: 190-207, 2024 03.
Article in English | MEDLINE | ID: mdl-38242246

ABSTRACT

The Keap1-Nrf2 signalling to transcriptionally regulate antioxidant response element (ARE)-driven target genes has been accepted as key redox-sensitive pathway governing a vast variety of cellular stresses during healthy survival and disease development. Herein, we identified two nuanced isoforms α and ß of Keap1 in HepG2 cells, arising from its first and another in-frame translation starting codons, respectively. In identifying those differential expression genes monitored by Keap1α and/or Keap1ß, an unusual interaction of Keap1 with Smad2/3 was discovered by parsing transcriptome sequencing, Keap1-interacting protein profiling and relevant immunoprecipitation data. Further examination validated that Smad2/3 enable physical interaction with Keap1, as well as its isoforms α and ß, by both EDGETSD and DLG motifs in the linker regions between their MH1 and MH2 domains, such that the stability of Smad2/3 and transcriptional activity are enhanced with their prolonged half-lives and relevant signalling responses from the cytoplasmic to nuclear compartments. The activation of Smad2/3 by Keap1, Keap1α or Keap1ß was much likely contributable to a coordinative or another competitive effect of Nrf2, particularly in distinct Keap1-based cellular responses to its cognate growth factor (i.e. TGF-ß1) or redox stress (e.g. stimulated by tBHQ and DTT). Overall, this discovery presents a novel functional bridge crossing the Keap1-Nrf2 redox signalling and the TGF-ß1-Smad2/3 pathways so as to coordinately regulate the healthy growth and development.


Subject(s)
NF-E2-Related Factor 2 , Transforming Growth Factor beta1 , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Transforming Growth Factor beta1/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Signal Transduction , Protein Isoforms/genetics , Protein Isoforms/metabolism
4.
Free Radic Biol Med ; 213: 488-511, 2024 03.
Article in English | MEDLINE | ID: mdl-38278308

ABSTRACT

Cisplatin (cis-Dichlorodiamineplatinum[II], CDDP) is generally accepted as a platinum-based alkylating agent type of the DNA-damaging anticancer drug, which is widely administrated in clinical treatment of many solid tumors. The pharmacological effect of CDDP is mainly achieved by replacing the chloride ion (Cl-) in its structure with H2O to form active substances with the strong electrophilic properties and then react with any nucleophilic molecules, primarily leading to genomic DNA damage and subsequent cell death. In this process, those target genes driven by the consensus electrophilic and/or antioxidant response elements (EpREs/AREs) in their promoter regions are also activated or repressed by CDDP. Thereby, we here examined the expression profiling of such genes regulated by two principal antioxidant transcription factors Nrf1 and Nrf2 (both encoded by Nfe2l1 and Nfe2l2, respectively) in diverse cellular signaling responses to this intervention. The results demonstrated distinct cellular metabolisms, molecular pathways and signaling response mechanisms by which Nrf1 and Nrf2 as the drug targets differentially contribute to the anticancer efficacy of CDDP on hepatoma cells and xenograft tumor mice. Interestingly, the role of Nrf1, rather than Nrf2, is required for the anticancer effect of CDDP, to suppress malignant behavior of HepG2 cells by differentially monitoring multi-hierarchical signaling to gene regulatory networks. To our surprise, it was found there exists a closer relationship of Nrf1α than Nrf2 with DNA repair, but the hyperactive Nrf2 in Nrf1α-∕- cells manifests a strong correlation with its resistance to CDDP, albeit their mechanistic details remain elusive.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Mice , Animals , Cisplatin/pharmacology , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Cell Line , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics
5.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119644, 2024 02.
Article in English | MEDLINE | ID: mdl-37996059

ABSTRACT

Since Nrf1 and Nrf2 are essential for regulating the lipid metabolism pathways, their dysregulation has thus been shown to be critically involved in the non-controllable inflammatory transformation into cancer. Herein, we have explored the molecular mechanisms underlying their distinct regulation of lipid metabolism, by comparatively analyzing the changes in those lipid metabolism-related genes in Nrf1α-/- and/or Nrf2-/- cell lines relative to wild-type controls. The results revealed that loss of Nrf1α leads to lipid metabolism disorders. That is, its lipid synthesis pathway was up-regulated by the JNK-Nrf2-AP1 signaling, while its lipid decomposition pathway was down-regulated by the nuclear receptor PPAR-PGC1 signaling, thereby resulting in severe accumulation of lipids as deposited in lipid droplets. By contrast, knockout of Nrf2 gave rise to decreases in lipid synthesis and uptake capacity. These demonstrate that Nrf1 and Nrf2 contribute to significant differences in the cellular lipid metabolism profiles and relevant pathological responses. Further experimental evidence unraveled that lipid deposition in Nrf1α-/- cells resulted from CD36 up-regulation by activating the PI3K-AKT-mTOR pathway, leading to abnormal activation of the inflammatory response. This was also accompanied by a series of adverse consequences, e.g., accumulation of reactive oxygen species (ROS) in Nrf1α-/- cells. Interestingly, treatment of Nrf1α-/- cells with 2-bromopalmitate (2BP) enabled the yield of lipid droplets to be strikingly alleviated, as accompanied by substantial abolishment of CD36 and critical inflammatory cytokines. Such Nrf1α-/- -led inflammatory accumulation of lipids, as well as ROS, was significantly ameliorated by 2BP. Overall, this study provides a potential strategy for cancer prevention and treatment by precision targeting of Nrf1, Nrf2 alone or both.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , NF-E2-Related Factor 1 , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , NF-E2-Related Factor 2/genetics , Palmitates , Phosphatidylinositol 3-Kinases , Reactive Oxygen Species , NF-E2-Related Factor 1/genetics
6.
PLoS One ; 18(11): e0294508, 2023.
Article in English | MEDLINE | ID: mdl-38011090

ABSTRACT

The essential role of protein degradation by ubiquitin-proteasome system is exerted primarily for maintaining cellular protein homeostasis. The transcriptional activation of proteasomal genes by mTORC1 signaling depends on Nrf1, but whether this process is directly via SREBP1 remains elusive. In this study, our experiment evidence revealed that Nrf1 is not a direct target of SREBP1, although both are involved in the rapamycin-responsive regulatory networks. Closely scrutinizing two distinct transcriptomic datasets unraveled no significant changes in transcriptional expression of Nrf1 and almost all proteasomal subunits in either siSREBP2-silencing cells or SREBP1-∕-MEFs, when compared to equivalent controls. However, distinct upstream signaling to Nrf1 dislocation by p97 and its processing by DDI1/2, along with downstream proteasomal expression, may be monitored by mTOR signaling, to various certain extents, depending on distinct experimental settings in different types of cells. Our further evidence has been obtained from DDI1-∕-(DDI2insC) cells, demonstrating that putative effects of mTOR on the rapamycin-responsive signaling to Nrf1 and proteasomes may also be executed partially through a DDI1/2-independent mechanism, albeit the detailed regulatory events remain to be determined.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , NF-E2-Related Factor 1 , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Proteasome Endopeptidase Complex/metabolism , Proteolysis , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , NF-E2-Related Factor 1/metabolism
7.
Int J Biol Macromol ; 253(Pt 8): 127575, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37866563

ABSTRACT

Nrf1 (encoded by Nfe2l1) and Nrf2 (encoded by Nfe2l2), as two key members of the CNC-bZIP transcription factor, exhibit significant functional differences in their pathophysiology. Our previous findings demonstrated that loss of Nrf1α (i.e., a full-length isoform of Nrf1) promotes HepG2-derived tumor growth in xenograft mice, but malgrowth of the xenograft tumor is significantly suppressed by knockout of Nrf2. To gain insights into the mechanism underlying such marked distinctions in their pathologic phenotypes, we mined transcriptome data from liver cancer in the TCGA database to establish a prognostic model and calculate predicted risk scores for each cell line. The results revealed that knockout of Nrf1α markedly increased the risk score in HepG2 cells, whereas the risk score was reduced by knockout of Nrf2. Notably, stanniocalcin 2 (STC2), a biomarker associated with liver cancer, that is upexpressed in hepatocellular carcinoma (HCC) tissues with a reduction in the overall survival ratio of those patients. We observed increased expression levels of STC2 in Nrf1α-/- cells but decreased expression in Nrf2-/- cells. These findings suggested that STC2 may play a role in mediating the distinction between Nrf1α-/- and Nrf2-/-. Such potential function of STC2 was further corroborated through a series of experiments combined with transcriptomic sequencing. The results revealed that STC2 functions as a dominant tumor-promoter, because the STC2-leading increases in clonogenicity of hepatoma cells and malgrowth of relevant xenograft tumor were almost completely abolished in STC2-/- cells. Together, these demonstrate that STC2 could be paved as a potential therapeutic target, albeit as a diagnostic marker, for HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Animals , Mice , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , NF-E2-Related Factor 2/genetics , Intercellular Signaling Peptides and Proteins , Biomarkers , Glycoproteins/genetics , Glycoproteins/metabolism
8.
Redox Biol ; 57: 102470, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36174386

ABSTRACT

To defend against a vast variety of challenges in oxygenated environments, all life forms have evolutionally established a set of antioxidants, detoxification, and cytoprotective systems during natural selection and adaptive survival, to maintain cell redox homeostasis and organ integrity in the healthy development and growth. Such antioxidant defense systems are predominantly regulated by two key transcription factors Nrf1 and Nrf2, but the underlying mechanism(s) for their coordinated redox control remains elusive. Here, we found that loss of full-length Nrf1 led to a dramatic increase in reactive oxygen species (ROS) and oxidative damages in Nrf1α-∕- cells, and this increase was not eliminated by drastic elevation of Nrf2, even though the antioxidant systems were also substantially enhanced by hyperactive Nrf2. Further studies revealed that the increased ROS production in Nrf1α-∕- resulted from a striking impairment in the mitochondrial oxidative respiratory chain and its gene expression regulated by nuclear respiratory factors, called αPalNRF1 and GABPNRF2. In addition to the antioxidant capacity of cells, glycolysis was greatly augmented by aberrantly-elevated Nrf2, so to partially relieve the cellular energy demands, but aggravate its mitochondrial stress. The generation of ROS was also differentially regulated by Nrf1 and Nrf2 through miR-195 and/or mIR-497-mediated UCP2 pathway. Consequently, the epithelial-mesenchymal transformation (EMT) of Nrf1α-∕- cells was activated by putative ROS-stimulated signaling via MAPK, HIF1α, NF-ƙB, PI3K and AKT, all players involved in cancer development and progression. Taken together, it is inferable that Nrf1 acts as a potent integrator of redox regulation by multi-hierarchical networks.

9.
Int J Mol Sci ; 23(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36142252

ABSTRACT

Nrf2 (nuclear factor E2-related factor 2, encoded by Nfe2l2) acts as a master transcriptional regulator in mediating antioxidant, detoxification, and cytoprotective responses against oxidative, electrophilic, and metabolic stress, but also plays a crucial role in cancer metabolism and multiple oncogenic pathways, whereas the redox sensor Keap1 functions as a predominant inhibitor of Nrf2 and, hence, changes in its expression abundance directly affect the Nrf2 stability and transcriptional activity. However, nuanced functional isoforms of Keap1 α and ß have rarely been identified to date. Herein, we have established four distinct cell models stably expressing Keap1-/-, Keap1ß(Keap1Δ1-31), Keap1-Restored, and Keap1α-Restored aiming to gain a better understanding of similarities and differences of two Keap1 isoforms between their distinct regulatory profiles. Our experimental evidence revealed that although Keap1 and its isoforms are still localized in the cytoplasmic compartments, they elicited differential inhibitory effects on Nrf2 and its target HO-1. Furthermore, transcriptome sequencing unraveled that they possess similar but different functions. Such functions were further determined by multiple experiments in vivo (i.e., subcutaneous tumour formation in nude mice) and in vitro (e.g., cell cloning, infection, migration, wound healing, cell cycle, apoptosis, CAT enzymatic activity, and intracellular GSH levels). Of note, the results obtained from tumourigenesis experiments in xenograft model mice were verified based on the prominent changes in the PTEN signaling to the PI3K-AKT-mTOR pathways, in addition to substantially aberrant expression patterns of those typical genes involved in the EMT (epithelial-mesenchymal transition), cell cycle, and apoptosis.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , NF-E2-Related Factor 2 , Animals , Humans , Mice , Antioxidants/pharmacology , Carcinoma, Hepatocellular/genetics , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Liver Neoplasms/genetics , Mice, Nude , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Phosphatidylinositol 3-Kinases/metabolism , Protein Isoforms/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism
10.
Antioxidants (Basel) ; 11(8)2022 Aug 07.
Article in English | MEDLINE | ID: mdl-36009254

ABSTRACT

Transcription factor Nrf2 (nuclear factor, erythroid 2-like 2, encoded by Nfe2l2) has been accepted as a key player in redox regulatory responses to oxidative or reductive stresses. However, relatively little is known about the potential role of Nrf1 (nuclear factor, erythroid 2-like 1, encoded by Nfe2l1) in the redox responses, particularly to reductive stress, although this 'fossil-like' factor is indispensable for cell homeostasis and organ integrity during the life process. Herein, we examine distinct roles of Nrf1 and Nrf2 in monitoring the defense response to 1,4-dithiothreitol (DTT, serving as a reductive stressor), concomitantly with unfolded protein response being induced by this chemical (also defined as an endoplasmic reticulum stressor). The results revealed that intracellular reactive oxygen species (ROS) were modestly increased in DTT-treated wild-type (WT) and Nrf1α-/- cell lines, but almost unaltered in Nrf2-/-ΔTA or caNrf2ΔN cell lines (with a genetic loss of transactivation or N-terminal Keap1-binding domains, respectively). This chemical treatment also enabled the rate of oxidized to reduced glutathione (i.e., GSSG to GSH) to be amplified in WT and Nrf2-/-ΔTA cells, but diminished in Nrf1α-/- cells, along with no changes in caNrf2ΔN cells. Consequently, Nrf1α-/-, but not Nrf2-/-ΔTA or caNrf2ΔN, cell viability was reinforced by DTT against its cytotoxicity, as accompanied by decreased apoptosis. Further experiments unraveled that Nrf1 and Nrf2 differentially, and also synergistically, regulated DTT-inducible expression of critical genes for defending against redox stress and endoplasmic reticulum stress. In addition, we also identified that Cys342 and Cys640 of Nrf1 (as redox-sensing sites within its N-glycodomain and DNA-binding domain, respectively) are required for its protein stability and transcription activity.

11.
Transl Pediatr ; 11(6): 882-890, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35800283

ABSTRACT

Background: C-X-C chemokine receptor type 4 (CXCR4) has a certain effect on renal fibrosis, and there are few specific studies in cells. We want to investigate the impact of suppressing CXCR4 activity on the expression of renal fibrosis-related genes in primary glomerular endothelial cells, mesangial cells, and podocytes. Methods: Immunofluorescence assays were used to determine the purity of isolated glomerular endothelial cells, mesangial cells, and podocytes. CXCR4 knockdown cell lines were established by transfecting the short hairpin (sh)RNA against CXCR4. T140 and AMD3100 were used to inhibit the activity of CXCR4. LY294002 was used to inhibit the activity of phosphoinositide 3-kinase (PI3K). The mRNA expression of CXCR4 was determined by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). The protein expression of CXCR4, collagen IV, matrix metallopeptidase (MMP)-9, PI3K, Rac1, and vascular cell adhesion protein 1 (VCAM-1) was evaluated by Western blot analysis. Results: High purity was observed on isolated primary glomerular endothelial cells and podocytes. However, the purity of isolated mesangial cells was relatively low. The mRNA expression of CXCR4 was significantly suppressed by the transfection of shRNA. Compared to control cells, the expression of CXCR4, collagen IV, MMP-9, PI3K, Rac1, and VCAM-1 were dramatically downregulated in cell lines transfected with shRNA against CXCR4. Furthermore, cell lines treated with T140, AMD3100, or LY294002 also showed downregulated expression of these proteins compared to untreated cells. No significant differences were observed in the protein expression of these proteins between control cells and cells transfected with the shRNA negative control (NC). Conclusions: Suppressing the activity of CXCR4 downregulated the expression of renal fibrosis-related genes in primary glomerular cells, even under a non-inflammatory state.

12.
Cells ; 11(13)2022 06 21.
Article in English | MEDLINE | ID: mdl-35805066

ABSTRACT

Consistently, the high metastasis of cancer cells is the bottleneck in the process of tumor treatment. In this process of metastasis, a pivotal role is executed by epithelial-mesenchymal transition (EMT). The epithelial-to-mesenchymal transformation was first proposed to occur during embryonic development. Later, its important role in explaining embryonic developmental processes was widely reported. Recently, EMT and its intermediate state were also identified as crucial drivers in tumor progression with the gradual deepening of research. To gain insights into the potential mechanism, increasing attention has been focused on the EMT-related transcription factors. Correspondingly, miRNAs target transcription factors to control the EMT process of tumor cells in different types of cancers, while there are still many exciting and challenging questions about the phenomenon of microRNA regulation of cancer EMT. We describe the relevant mechanisms of miRNAs regulating EMT, and trace the regulatory roles and functions of major EMT-related transcription factors, including Snail, Twist, zinc finger E-box-binding homeobox (ZEB), and other families. In addition, on the basis of the complex regulatory network, we hope that the exploration of the regulatory relationship of non-transcription factors will provide a better understanding of EMT and cancer metastasis. The identification of the mechanism leading to the activation of EMT programs during diverse disease processes also provides a new protocol for the plasticity of distinct cellular phenotypes and possible therapeutic interventions. Here, we summarize the recent progress in this direction, with a promising path for further insight into this fast-moving field.


Subject(s)
MicroRNAs , Neoplasms , Epithelial-Mesenchymal Transition/genetics , Humans , MicroRNAs/genetics , Neoplasms/genetics , Snail Family Transcription Factors , Transcription Factors/genetics , Zinc Finger E-box-Binding Homeobox 1/genetics
13.
Biochim Biophys Acta Mol Cell Res ; 1869(9): 119299, 2022 09.
Article in English | MEDLINE | ID: mdl-35613680

ABSTRACT

The membrane-bound transcription factor Nrf1 (encoded by Nfe2l1) is activated by sensing glucose deprivation, cholesterol abundance, proteasomal inhibition and oxidative stress and then mediates distinct signaling responses to maintain cellular homeostasis. Herein, we found that Nrf1 stability and transactivity are both enhanced by USP19, a ubiquitin-specific protease tail-anchored in the endoplasmic reticulum (ER) through its C-terminal transmembrane domain. Further experiments revealed that USP19 directly interacts with Nrf1 in proximity to the ER and topologically acts as a deubiquitinating enzyme to remove ubiquitin moieties from this protein, which allow it to circumvent potential proteasomal degradation. This USP19-mediated effect takes place only after Nrf1 is retro-translocated by p97 out of the ER membrane to dislocate the cytoplasmic side. Conversely, knockout of USP19 causes significant decreases in the abundance of Nrf1 and the entrance of its active isoform into the nucleus, which result in the downregulation of its target proteasomal subunits and a modest reduction in USP19-/--derived tumor growth in xenograft mice when compared with wild-type controls. Altogether, these results demonstrate that USP19 serves as a novel mechanistic modulator of Nrf1, but not Nrf2, thereby enabling Nrf1 to be rescued from the putative ubiquitin-directed ER-associated degradation pathway. In turn, our additional experimental evidence has revealed that transcriptional expression of endogenous USP19 and its promoter-driven reporter genes is differentially regulated by Nrf2, as well by Nrf1, at distinct layers within a complex hierarchical regulatory network.


Subject(s)
Nuclear Respiratory Factor 1 , Ubiquitin , Animals , Endopeptidases/genetics , Endopeptidases/metabolism , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Humans , Mice , Nuclear Respiratory Factor 1/genetics , Nuclear Respiratory Factor 1/metabolism , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/genetics , Ubiquitin/metabolism , Ubiquitin C/metabolism , Ubiquitin-Specific Proteases/metabolism
14.
Front Oncol ; 11: 707032, 2021.
Article in English | MEDLINE | ID: mdl-34268128

ABSTRACT

Nrf1 and Nrf2, as two principal CNC-bZIP transcription factors, regulate similar but different targets involved in a variety of biological functions for maintaining cell homeostasis and organ integrity. Of note, the unique topobiological behavior of Nrf1 makes its functions more complicated than Nrf2, because it is allowed for alternatively transcribing and selectively splicing to yield multiple isoforms (e.g., TCF11, Nrf1α). In order to gain a better understanding of their similarities and differences in distinct regulatory profiles, all four distinct cell models for stably expressing TCF11, TCF11ΔN , Nrf1α or Nrf2 have been herein established by an Flp-In™ T-REx™-293 system and then identified by transcriptomic sequencing. Further analysis revealed that Nrf1α and TCF11 have similar yet different regulatory profiles, although both contribute basically to positive regulation of their co-targets, which are disparate from those regulated by Nrf2. Such disparity in those gene regulations by Nrf1 and Nrf2 was further corroborated by scrutinizing comprehensive functional annotation of their specific and/or common target genes. Conversely, the mutant TCF11ΔN, resulting from a deletion of the N-terminal amino acids 2-156 from TCF11, resembles Nrf2 with the largely consistent structure and function. Interestingly, our further experimental evidence demonstrates that TCF11 acts as a potent tumor-repressor relative to Nrf1α, albeit both isoforms possess a congruous capability to prevent malignant growth of tumor and upregulate those genes critical for improving the survival of patients with hepatocellular carcinoma.

15.
Oxid Med Cell Longev ; 2020: 5097109, 2020.
Article in English | MEDLINE | ID: mdl-33376579

ABSTRACT

There is hitherto no literature available for explaining two distinct, but confused, Nrf1 transcription factors, because they shared the same abbreviations from nuclear factor erythroid 2-related factor 1 (also called Nfe2l1) and nuclear respiratory factor (originally designated α-Pal). Thus, we have here identified that Nfe2l1Nrf1 and α-PalNRF1 exert synergistic and antagonistic roles in integrative regulation of the nuclear-to-mitochondrial respiratory and antioxidant transcription profiles. In mouse embryonic fibroblasts (MEFs), knockout of Nfe2l1-/- leads to substantial decreases in expression levels of α-PalNRF1 and Nfe2l2, together with TFAM (mitochondrial transcription factor A) and other target genes. Similar inhibitory results were determined in Nfe2l2-/- MEFs but with an exception that both GSTa1 and Aldh1a1 were distinguishably upregulated in Nfe2l1-/- MEFs. Such synergistic contributions of Nfe2l1 and Nfe2l2 to the positive regulation of α-PalNRF1 and TFAM were validated in Keap1-/- MEFs. However, human α-PalNRF1 expression was unaltered by hNfe2l1α-/- , hNfe2l2-/-ΔTA , or even hNfe2l1α-/-+siNrf2, albeit TFAM was activated by Nfe2l1 but inhibited by Nfe2l2; such an antagonism occurred in HepG2 cells. Conversely, almost all of mouse Nfe2l1, Nfe2l2, and cotarget genes were downexpressed in α-PalNRF1+/- MEFs. On the contrary, upregulation of human Nfe2l1, Nfe2l2, and relevant reporter genes took place after silencing of α-PalNRF1, but their downregulation occurred upon ectopic expression of α-PalNRF1. Furtherly, Pitx2 (pituitary homeobox 2) was also identified as a direct upstream regulator of Nfe2l1 and TFAM, besides α-PalNRF1. Overall, these across-talks amongst Nfe2l1, Nfe2l2, and α-PalNRF1, along with Pitx2, are integrated from the endoplasmic reticulum towards the nuclear-to-mitochondrial communication for targeting TFAM, in order to finely tune the robust balance of distinct cellular oxidative respiratory and antioxidant gene transcription networks, albeit they differ between the mouse and the human. In addition, it is of crucial importance to note that, in view of such mutual interregulation of these transcription factors, much cautions should be severely taken for us to interpret those relevant experimental results obtained from knockout of Nfe2l1, Nfe2l2, α-Pal or Pitx2, or their gain-of-functional mutants.


Subject(s)
Antioxidants/metabolism , Cell Nucleus/metabolism , Mitochondria/metabolism , NF-E2-Related Factor 1/metabolism , Nuclear Respiratory Factor 1/metabolism , Transcription, Genetic , Animals , Cell Line , Cell Nucleus/genetics , Humans , Mice , Mice, Knockout , Mitochondria/genetics , NF-E2-Related Factor 1/genetics , Nuclear Respiratory Factor 1/genetics
16.
Antioxidants (Basel) ; 9(1)2019 Dec 19.
Article in English | MEDLINE | ID: mdl-31861550

ABSTRACT

The water-soluble Nrf2 (nuclear factor, erythroid 2-like 2, also called Nfe2l2) is accepted as a master regulator of antioxidant responses to cellular stress, and it was also identified as a direct target of the endoplasmic reticulum (ER)-anchored PERK (protein kinase RNA-like endoplasmic reticulum kinase). However, the membrane-bound Nrf1 (nuclear factor, erythroid 2-like 1, also called Nfe2l1) response to ER stress remains elusive. Herein, we report a unity of opposites between these two antioxidant transcription factors, Nrf1 and Nrf2, in coordinating distinct cellular responses to the ER stressor tunicamycin (TU). The TU-inducible transcription of Nrf1 and Nrf2, as well as GCLM (glutamate cysteine ligase modifier subunit) and HO-1 (heme oxygenase 1), was accompanied by activation of ER stress signaling networks. Notably, the unfolded protein response (UPR) mediated by ATF6 (activating transcription factor 6), IRE1 (inositol requiring enzyme 1) and PERK was significantly suppressed by Nrf1-specific knockout, but hyper-expression of Nrf2 and its target genes GCLM and HO-1 has retained in Nrf1a-/- cells. By contrast, Nrf2-/-ΔTA cells with genomic deletion of its transactivation (TA) domain resulted in significant decreases of GCLM, HO-1 and Nrf1; this was accompanied by partial decreases of IRE1 and ATF6, rather than PERK, but with an increase of ATF4 (activating transcription factor 4). Interestingly, Nrf1 glycosylation and its trans-activity to mediate the transcriptional expression of the 26S proteasomal subunits, were repressed by TU. This inhibitory effect was enhanced by Nrf1a-/- and Nrf2-/-ΔTA, but not by a constitutive activator caNrf2ΔN (that increased abundances of the non-glycosylated and processed Nrf1). Furthermore, caNrf2ΔN also enhanced induction of PERK and IRE1 by TU, but reduced expression of ATF4 and HO-1. Thus, it is inferred that such distinct roles of Nrf1 and Nrf2 are unified to maintain cell homeostasis by a series of coordinated ER-to-nuclear signaling responses to TU. Nrf1 (i.e., a full-length form) acts in a cell-autonomous manner to determine the transcription of most of UPR-target genes, albeit Nrf2 is also partially involved in this process. Consistently, transactivation of ARE (antioxidant response element)-driven BIP (binding immunoglobulin protein)-, PERK- and XBP1 (X-box binding protein 1)-Luc reporter genes was mediated directly by Nrf1 and/or Nrf2. Interestingly, Nrf1 is more potent than Nrf2 at mediating the cytoprotective responses against the cytotoxicity of TU alone plus tBHQ (tert-butylhydroquinone). This is also further supported by the evidence that the intracellular reactive oxygen species (ROS) levels are increased in Nrf1a-/- cells, but rather are, to our surprise, decreased in Nrf2-/-ΔTA cells.

17.
Cancers (Basel) ; 10(12)2018 Dec 17.
Article in English | MEDLINE | ID: mdl-30562963

ABSTRACT

Liver-specific knockout of Nrf1 in the mouse leads to spontaneous development of non- alcoholic steatohepatitis with dyslipidemia, and then its deterioration results in hepatoma, but the underlying mechanism remains elusive to date. A similar pathological model is reconstructed here by using human Nrf1α-specific knockout cell lines. Our evidence has demonstrated that a marked increase of the inflammation marker COX2 definitely occurs in Nrf1α-/- cells. Loss of Nrf1α leads to hyperactivation of Nrf2, which results from substantial decreases in Keap1, PTEN and most of 26S proteasomal subunits in Nrf1α-/- cells. Further investigation of xenograft model mice showed that malignant growth of Nrf1α-/--derived tumors is almost abolished by silencing of Nrf2, while Nrf1α+/⁺-tumor is markedly repressed by an inactive mutant (i.e., Nrf2-/-ΔTA), but largely unaffected by a priori constitutive activator (i.e., caNrf2ΔN). Mechanistic studies, combined with transcriptomic sequencing, unraveled a panoramic view of opposing and unifying inter-regulatory cross-talks between Nrf1α and Nrf2 at different layers of the endogenous regulatory networks from multiple signaling towards differential expression profiling of target genes. Collectively, Nrf1α manifests a dominant tumor-suppressive effect by confining Nrf2 oncogenicity. Though as a tumor promoter, Nrf2 can also, in turn, directly activate the transcriptional expression of Nrf1 to form a negative feedback loop. In view of such mutual inter-regulation by between Nrf1α and Nrf2, it should thus be taken severe cautions to interpret the experimental results from loss of Nrf1α, Nrf2 or both.

18.
Toxicol Appl Pharmacol ; 360: 160-184, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30268580

ABSTRACT

The topobiological behaviour of Nrf1 dictates its post-translational modification and its ability to transactivate target genes. Here, we have elucidated that topovectorial mechanisms control the juxtamembrane processing of Nrf1 on the cyto/nucleoplasmic side of endoplasmic reticulum (ER), whereupon it is cleaved and degraded to remove various lengths of its N-terminal domain (NTD, also refolded into a UBL module) and acidic domain-1 (AD1) to yield multiple isoforms. Notably, an N-terminal ~12.5-kDa polypeptide of Nrf1 arises from selective cleavage at an NHB2-adjoining region within NTD, whilst other longer UBL-containing isoforms may arise from proteolytic processing of the protein within AD1 around PEST1 and Neh2L degrons. The susceptibility of Nrf1 to proteolysis is determined by dynamic repositioning of potential UBL-adjacent degrons and cleavage sites from the ER lumen through p97-driven retrotranslocation and -independent pathways into the cyto/nucleoplasm. These repositioned degrons and cleavage sites within NTD and AD1 of Nrf1 are coming into their bona fide functionality, thereby enabling it to be selectively processed by cytosolic DDI-1/2 proteases and also partiality degraded via 26S proteasomes. The resultant proteolytic processing of Nrf1 gives rise to a mature ~85-kDa CNC-bZIP transcription factor, which regulates transcriptional expression of cognate target genes. Furthermore, putative ubiquitination of Nrf1 is not a prerequisite necessary for involvement of p97 in the client processing. Overall, the regulated juxtamembrane proteolysis (RJP) of Nrf1, though occurring in close proximity to the ER, is distinctive from the mechanism that regulates the intramembrane proteolytic (RIP) processing of ATF6 and SREBP1.


Subject(s)
NF-E2-Related Factor 1/metabolism , Peptides/metabolism , Transcription Factors/metabolism , Amino Acid Sequence , Animals , COS Cells , Cell Line , Cell Nucleus/metabolism , Chlorocebus aethiops , Cytosol/metabolism , Endoplasmic Reticulum/metabolism , Gene Expression Regulation/physiology , HEK293 Cells , Humans , Mice , Proteasome Endopeptidase Complex/metabolism , Protein Isoforms/metabolism , Proteolysis , Sequence Alignment , Transcriptional Activation/physiology
19.
Toxicol Appl Pharmacol ; 360: 212-235, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30287392

ABSTRACT

To gain a better understanding of the multistep processing of Nrf1 to yield various isoforms with confused molecular masses, we herein establish a generally acceptable criterion required for identification of its endogenous full-length proteins and derivative isoforms expressed differentially in distinct experimental cell lines. Further work has been focused on the molecular mechanisms that dictate the successive post-translational modifications (i.e. glycosylation by OST, deglycosylation by NGLY, and ubiquitination by Hrd1) of this CNC-bZIP protein and its proteolytic processing to give rise to multiple proteoforms. Several lines of experimental evidence have demonstrated that the nascent Nrf1α/TCF11 polypeptide (non-glycosylated) is transiently translocated into the endoplasmic reticulum (ER), in which it becomes an inactive glycoprotein-A, and is folded in a proper topology within and around membranes. Thereafter, dynamic repositioning of the ER-resident domains in Nrf1 glycoprotein is driven by p97-fueled retrotranslocation into extra-ER compartments. Therein, Nrf1 glycoprotein is allowed for deglycosylation digestion by glycosidases into a deglycoprotein-B and its progressive proteolytic processing by cytosolic DDI-1/2 and proteasomes so as to generate N-terminally-truncated protein-C/D. This processing is accompanied by removal of a major N-terminal ~12.5-kDa polypeptide from Nrf1α. Interestingly, our present study has further unraveled that there exist coupled positive and negative feedback circuits between Nrf1 and cognate target genes, including those encoding its regulators p97, Hrd1, DDI-1 and proteasomes. These key players are differentially or even oppositely involved in diverse cellular signaling responses to distinct extents of ER-derived proteotoxic and oxidative stresses induced by different concentrations of proteasomal inhibitors.


Subject(s)
NF-E2-Related Factor 1/genetics , Nuclear Respiratory Factor 1/genetics , Protein Isoforms/genetics , Protein Processing, Post-Translational/genetics , Animals , COS Cells , Cell Line , Cell Line, Tumor , Chlorocebus aethiops , Endoplasmic Reticulum/genetics , Glycoproteins/genetics , Glycosylation , HEK293 Cells , Hep G2 Cells , Humans , Oxidative Stress/genetics , Proteolysis , Ubiquitination/genetics
20.
Int J Mol Sci ; 19(10)2018 Sep 26.
Article in English | MEDLINE | ID: mdl-30261635

ABSTRACT

Normal growth and development, as well as adaptive responses to various intracellular and environmental stresses, are tightly controlled by transcriptional networks. The evolutionarily conserved genomic sequences across species highlights the architecture of such certain regulatory elements. Among them, one of the most conserved transcription factors is the basic-region leucine zipper (bZIP) family. Herein, we have performed phylogenetic analysis of these bZIP proteins and found, to our surprise, that there exist a few homologous proteins of the family members Jun, Fos, ATF2, BATF, C/EBP and CNC (cap'n'collar) in either viruses or bacteria, albeit expansion and diversification of this bZIP superfamily have occurred in vertebrates from metazoan. Interestingly, a specific group of bZIP proteins is identified, designated Nach (Nrf and CNC homology), because of their strong conservation with all the known CNC and NF-E2 p45 subunit-related factors Nrf1 and Nrf2. Further experimental evidence has also been provided, revealing that Nach1 and Nach2 from the marine bacteria exert distinctive functions, when compared with human Nrf1 and Nrf2, in the transcriptional regulation of antioxidant response element (ARE)-battery genes. Collectively, further insights into these Nach/CNC-bZIP subfamily transcription factors provide a novel better understanding of distinct biological functions of these factors expressed in distinct species from the marine bacteria to humans.


Subject(s)
Aquatic Organisms/genetics , Bacteria/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Evolution, Molecular , Animals , Basic-Leucine Zipper Transcription Factors/classification , Gene Expression Regulation , Genetic Variation , Humans , Phylogeny , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...