Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
AIDS ; 37(1): 33-42, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36281689

ABSTRACT

OBJECTIVE: Mycobacterium tuberculosis /human immunodeficiency virus (MTB/HIV) coinfection has become an urgent problem in the field of prevention and control of infectious diseases in recent years. Adoptive cellular immunotherapy using antigen-specific T-cell receptor (TCR) engineered T cells which recognize the specific antigen artificially may have tremendous potential in anti-MTB/HIV coinfection. We have previously successfully identified a MTB Ag85B 199-207 and HIV-1 Env 120-128 peptide-bispecific TCR screened out from peripheral blood mononuclear cells of a HLA-A∗0201 + healthy individual and have further studied that how residues on the predicted complementarity determining region (CDR) 3 of the ß chain contribute to the bispecific TCR contact with the peptide-MHC. However, it is not clear which amino acids in the predicted CDR3α of the bispecific TCR play a crucial role in ligand recognition. METHODS: The variants in the CDR3α of the bispecific TCR were generated using alanine substitution. We then evaluated the immune effects of the five variants on T-cell recognition upon encounter with the MTB or HIV-1 antigen. RESULTS: Mutation of two amino acids (E112A, Y115A) in CDR3α of the bispecific TCR caused a markedly diminished T-cell response to antigen, whereas mutation of the other three amino acids (S113A, P114A, S116A) resulted in completely eliminated response. CONCLUSION: This study demonstrates that Ser 113 , Pro 114 and Ser 116 in CDR3α of the bispecific TCR are especially important for antigen recognition. These results will pave the way for the future development of an improved high-affinity bispecific TCR for use in adoptive cellular immunotherapy for MTB/HIV coinfected patients.


Subject(s)
HIV Infections , HIV-1 , Mycobacterium tuberculosis , Humans , Complementarity Determining Regions/genetics , Leukocytes, Mononuclear , HIV Infections/therapy , Amino Acids , Binding Sites
2.
BMC Microbiol ; 15: 265, 2015 Nov 14.
Article in English | MEDLINE | ID: mdl-26572227

ABSTRACT

BACKGROUND: Dengue virus (DENV), the most widely prevalent arbovirus, continues to be a threat to human health in the tropics and subtropics. Early and rapid detection of DENV infection during the acute phase of illness is crucial for proper clinical patient management and preventing the spread of infection. The aim of the current study was to develop a specific, sensitive, and robust reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) assay for detection and differentiation of DENV1-4 serotypes. RESULTS: The method detection primers, which were designed to target the different DENV serotypes, were identified by inspection of multiple sequence alignments of the non-structural protein (NS) 2A of DENV1, NS4B of DENV2, NS4A of DENV3 and the 3' untranslated region of the NS protein of DENV4. No cross-reactions of the four serotypes were observed during the tests. The detection limits of the DENV1-4-specific RT-LAMP assays were approximately 10-copy templates per reaction. The RT-LAMP assays were ten-fold more sensitive than RT-PCR or real-time PCR. The diagnostic rate was 100% for clinical strains of DENV, and 98.9% of the DENV-infected patients whose samples were tested were detected by RT-LAMP. Importantly, no false-positives were detected with the new equipment and methodology that was used to avoid aerosol contamination of the samples. CONCLUSION: The RT-LAMP method used in our study is specific, sensitive, and suitable for further investigation as a useful alternative to the current methods used for clinical diagnosis of DENV1-4, especially in hospitals and laboratories that lack sophisticated diagnostic systems.


Subject(s)
Dengue Virus/classification , Dengue Virus/genetics , Dengue/diagnosis , Dengue/virology , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , DNA Primers/genetics , Dengue Virus/isolation & purification , Humans , Reverse Transcription , Sensitivity and Specificity , Serogroup , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...