Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Ophthalmol ; 24(1): 158, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38600456

ABSTRACT

BACKGROUND: This study aimed to compare the visual outcomes of the first operated eyes with those of the second operated eyes following small-incision lenticule extraction (SMILE). METHODS: A total of 202 patients (404 eyes) underwent SMILE using the tear film mark centration method for myopia and myopic astigmatism correction. Baseline characteristics, objective optical quality, decentered displacement, induced corneal aberrations, and modulation transfer function (MTF) values were assessed. Linear regression analyzed the relationship between decentration and visual quality parameters, including corneal aberrations and MTF values. RESULTS: No significant difference was observed in objective visual quality, efficacy, and safety indexes between the two groups (all P > 0.05). The average decentered displacement for the first and second surgical eyes was 0.278 ± 0.17 mm and 0.315 ± 0.15 mm, respectively (P = 0.002). The horizontal coma in the first surgical eyes were notably lower than in the second (P = 0.000). MTF values at spatial frequencies of 5, 10, 15, and 20 cycles/degree (c/d) were higher in the first surgical eyes compared to the second (all P < 0.05). Linear regression indicated that high-order aberrations (HOAs), root mean square (RMS) coma, spherical aberration, horizontal coma, vertical coma, and eccentric displacement were all linearly correlated. Furthermore, MTF values exhibited a linear relationship with eccentric displacement across these spatial frequencies. CONCLUSIONS: There was no discernible difference in visual acuity, efficacy, or safety between the two operated eyes. Nonetheless, the first operated eyes exhibited reduced decentered displacement and demonstrated superior outcomes in terms of horizontal coma and MTF values compared to the second operated eyes following SMILE. The variations in visual quality parameters were linearly correlated with decentered displacement.


Subject(s)
Astigmatism , Corneal Wavefront Aberration , Myopia , Humans , Refraction, Ocular , Coma , Corneal Topography , Lasers, Excimer/therapeutic use , Myopia/surgery , Astigmatism/surgery , Corneal Stroma/surgery
2.
Transl Pediatr ; 12(4): 695-708, 2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37181033

ABSTRACT

Background: To determine the prevalence of refractive error and ocular biometric data (corneal curvature, axial length, and central corneal thickness) in 6 to 15 years old children of Li and Han ethnicities of China. Methods: This study was a cross-sectional study. A cluster sampling method was used to select 2 nine-year consistent schools in the Ledong and Wanning areas of Hainan Province, with a total of 4,197 students, 3,969 valid data. Eyesight test, slit lamp, autorefraction after cycloplegia, and ocular biometric assessment were performed. The chi-square test and logistic regression analysis was taken as the comparative method. Results: Myopia, hyperopia, and astigmatism are defined as: myopia: SE ≤-0.50 D; hyperopia: 0.50 D

3.
J Ophthalmol ; 2022: 9774448, 2022.
Article in English | MEDLINE | ID: mdl-35340275

ABSTRACT

Purpose: The purpose of this study was to evaluate the long-term prognosis of small-incision femtosecond laser-assisted intracorneal concave lenticule implantation (SFII) in correction of human keratoconus. Methods: This was a prospective study for 11 patients who received SFII after being diagnosed as progressive keratoconus based on the Amsler-Krumeich classification system. Clinical assessment was performed for all the patients prior to and postsurgically at different time points for 5 years. These included uncorrected distance visual acuity (UDVA), corrected distance visual acuity (CDVA), biomechanically corrected intraocular pressure (bIOP), corneal topography, anterior segment optical coherence tomography (AS-OCT), confocal microscopy, and biomechanical assessment with Corvis ST. Results: Comparison of preoperative and 60-month postoperative UDVA and CDVA (P 60months=0.081 and 0.001, respectively), all eyes showed an improvement in CDVA. Corneal topography showed no significant changes in corneal anterior K1, K2, posterior K1, K2, posterior elevation, or corneal densitometry compared with preoperative levels (P > 0.05). Corvis ST showed that central corneal thickness (CCT) and stiffness at applanation 1 (SP-A1) were significantly greater 1 week postsurgically when compared to the baseline (P < 0.05) and remained stable thereafter. The lenticule under the AS-OCT remained transparent throughout the entire postsurgical period. Under confocal microscopy, corneal edema and an increase in cell activation and reflectivity were observed at the lenticule-stromal interface within 1 week postoperatively. These reactions gradually subsided with time within 6 months. Conclusion: SFII is an effective procedure to prevent the progression of keratoconus due to its minimal invasiveness and capability of maintaining a steady biometry of the cornea.

4.
Front Pharmacol ; 13: 1082997, 2022.
Article in English | MEDLINE | ID: mdl-36588710

ABSTRACT

Adenosine A2A receptors (A2ARs) appear early in the retina during postnatal development, but the roles of the A2ARs in the morphogenesis of distinct types of retinal ganglion cells (RGCs) during postnatal development and neonatal inflammatory response remain undetermined. As the RGCs are rather heterogeneous in morphology and functions in the retina, here we resorted to the Thy1-YFPH transgenic mice and three-dimensional (3D) neuron reconstruction to investigate how A2ARs regulate the morphogenesis of three morphologically distinct types of RGCs (namely Type I, II, III) during postnatal development and neonatal inflammation. We found that the A2AR antagonist KW6002 did not change the proportion of the three RGC types during retinal development, but exerted a bidirectional effect on dendritic complexity of Type I and III RGCs and cell type-specifically altered their morphologies with decreased dendrite density of Type I, decreased the dendritic field area of Type II and III, increased dendrite density of Type III RGCs. Moreover, under neonatal inflammation condition, KW6002 specifically increased the proportion of Type I RGCs with enhanced the dendrite surface area and volume and the proportion of Type II RGCs with enlarged the soma area and perimeter. Thus, A2ARs exert distinct control of RGC morphologies to cell type-specifically fine-tune the RGC dendrites during normal development but to mainly suppress RGC soma and dendrite volume under neonatal inflammation.

5.
Neuropharmacology ; 200: 108806, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34562441

ABSTRACT

Synapse pruning is essential not only for the developmental establishment of synaptic connections in the brain but also for the pathogenesis of neurodevelopmental and neurodegenerative disorders. However, there are no effective pharmacological means to regulate synaptic pruning during early development. Using the eye-specific segregation of the dorsal lateral geniculate nucleus (dLGN) as a model of synaptic pruning coupled with adenosine A2A receptor (A2AR) antagonism and knockout, we demonstrated while genetic deletion of the A2AR throughout the development attenuated eye-specific segregation with the attenuated microglial phagocytosis at postnatal day 5 (P5), selective treatment with the A2AR antagonist KW6002 at P2-P4 facilitated synaptic pruning of visual pathway with microglial activation, increased lysosomal activity in microglia and increased microglial engulfment of retinal ganglion cell (RGC) inputs in the dLGN at P5 (but not P10). Furthermore, KW6002-mediated facilitation of synaptic pruning was activity-dependent since tetrodotoxin (TTX) treatment abolished the KW6002 facilitation. Moreover, the A2AR antagonist also modulated postsynaptic proteins and synaptic density at early postnatal stages as revealed by the reduced immunoreactivity of postsynaptic proteins (Homer1 and metabotropic glutamate receptor 5) and colocalization of presynaptic VGlut2 and postsynaptic Homer1 puncta in the dLGN. These findings suggest that A2AR can control pruning by multiple actions involving the retinal wave, microglia engulfment, and postsynaptic stability. Thus, A2AR antagonists may represent a novel pharmacological strategy to modulate microglia-mediated synaptic pruning and treatment of neurodevelopmental disorders associated with dysfunctional pruning.


Subject(s)
Geniculate Bodies/drug effects , Microglia/drug effects , Neuronal Plasticity/drug effects , Receptor, Adenosine A2A/drug effects , Retinal Ganglion Cells/drug effects , Animals , Homer Scaffolding Proteins/drug effects , Mice , Mice, Knockout , Phagocytosis/drug effects , Purines , Receptor, Metabotropic Glutamate 5/drug effects , Tetrodotoxin/pharmacology
6.
IBRO Rep ; 5: 74-90, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30450442

ABSTRACT

The majority of neurons in the neocortex are excitatory pyramidal cells (PCs). Many systematic classification schemes have been proposed based the neuronal morphology, the chemical composition, and the synaptic connectivity, etc. Recently, a cortical column of primary somatosensory cortex (SSC) has been reconstruction and functionally simulated (Markram et al., 2015). Putting forward from this study, here we proposed a simplified classification scheme for PCs in all layers of the SSC by mainly identifying apical dendritic morphology based on a large data set of 3D neuron reconstructions. We used this scheme to classify three types in layer 2, two in layer 3, three in layer 4, four in layer 5, and six types in layer 6. These PC types were visually distinguished and confirmed by quantitative differences in their morphometric properties. The classes yielded using this scheme largely corresponded with PC classes that were defined previously based on other neuronal and synaptic properties such as long-range projects and synaptic innervations, further validating its applicability. Therefore, the morphology information of apical dendrites is sufficient for a simple scheme to classify a spectrum of anatomical types of PCs in the SSC.

7.
Neurosci Lett ; 676: 34-40, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29627341

ABSTRACT

Perinatal inflammatory insult in preterm babies is associated with vision impairment, but the underlying cellular mechanism is still unknown. In this study, we set out to explore whether systemic inflammatory stress affects the development of retinal ganglion cells (RGCs). Neonatal inflammation was induced by single and systemic injection of lipopolysaccharide (LPS, 1 mg/kg) at postnatal day 4 (P4). Morphological changes of RGCs were investigated by using 3D neuron reconstruction technique in Thy-1 YFPH transgenic mice at P21, of which a fraction of RGCs selectively expresses the yellow fluorescent protein (YFP). Three types (Type I, II, III) of RGCs were distinguished and classified according to the characteristic features in their dendritic field area and dendrite density. Neonatal exposure to LPS did not alter the composition of the three RGC types but induced a reorganization of dendritic architecture in the RGC Type I and II (but not Type III). The average diameter, surface area and volume of dendrites in both RGC Type I and II were increased after systemic inflammation compared with those in the control group. However, soma sizes of all three RGC types were not affected by neonatal inflammation. Meanwhile, using anterograde labeling of the retinal cells, we found that neonatal exposure to LPS also did not affect the pattern of RGC projections in the dorsal lateral geniculate nucleus of the thalamus (dLGN). These results indicate that RGC dendrite reorganization induced by neonatal inflammation may contribute to the retinal cell dysfunctions associated with systemic inflammation in premature babies.


Subject(s)
Dendrites/pathology , Geniculate Bodies/pathology , Inflammation/pathology , Retinal Ganglion Cells/pathology , Visual Pathways/pathology , Animals , Animals, Newborn , Inflammation/chemically induced , Lipopolysaccharides/administration & dosage , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...