Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Front Pharmacol ; 13: 758501, 2022.
Article in English | MEDLINE | ID: mdl-35211009

ABSTRACT

Diabetes mellitus is a fast-growing disease with a major influence on people's quality of life. Oral hypoglycemic drugs and insulin are currently the main effective drugs in the treatment of diabetes, but chronic consumption of these drugs has certain side effects. Polysaccharides, saponins, flavonoids, and phenolics are the primary secondary metabolites isolated from the rhizomes of Polygonatum sibiricum Redouté [Asparagaceae], Polygonatum kingianum Collett & Hemsl [Asparagaceae], or Polygonatum cyrtonema Hua [Asparagaceae], which have attracted much more attention owing to their unique therapeutic role in the treatment and prevention of diabetes. However, the research on the mechanism of these three Polygonatum spp. in diabetes has not been reviewed. This review provides a summary of the research progress of three Polygonatum spp. on diabetes and its complications, reveals the potential antidiabetic mechanism of three Polygonatum spp., and discusses the effect of different processed products of three Polygonatum spp. in treating diabetes, for the sake of a thorough understanding of its effects on the prevention and treatment of diabetes and diabetes complications.

2.
Cell Biol Int ; 46(3): 475-487, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34939719

ABSTRACT

Mutations of PSEN1 have been reported in dilated cardiomyopathy pedigrees. Understanding the effects and mechanisms of PSEN1 in cardiomyocytes might have important implications for treatment of heart diseases. Here, we showed that PSEN1 was downregulated in ischemia-induced failing hearts. Functionally, cardiovascular specific PSEN1 deletion led to spontaneous death of the mice due to cardiomyopathy. At the age of 11 months, the ratio of the heart weight/body weight was slightly lower in the Sm22a-PSEN1-KO mice compared with that of the WT mice. Echocardiography showed that the percentage of ejection fraction and fractional shortening was significantly reduced in the Sm22a-PSEN1-KO group compared with the percent of these measures in the WT group, indicating that PSEN1-KO resulted in heart failure. The abnormally regulated genes resulted from PSEN1-KO were detected to be enriched in muscle development and dilated cardiomyopathy. Among them, several genes encode Ca2+ ion channels, promoting us to investigate the effects of PSEN1 KO on regulation of Ca2+ in isolated adult cardiomyocytes. Consistently, in isolated adult cardiomyocytes, PSEN1-KO increased the concentration of cytosolic Ca2+ and reduced Ca2+ concentration inside the sarcoplasmic reticulum (SR) lumen at the resting stage. Additionally, SR Ca2+ was decreased in the failing hearts of WT mice, but with the lowest levels observed in the failing hearts of PSEN1 knockout mice. These results indicate that the process of Ca2+ release from SR into cytoplasm was affected by PSEN1 KO. Therefore, the abnormalities in Ca2+ homeostasis resulted from downregulation of PSEN1 in failing hearts might contribute to aging-related cardiomyopathy, which might had important implications for the treatment of aging-related heart diseases.


Subject(s)
Calcium , Cardiomyopathy, Dilated , Animals , Cardiomyopathy, Dilated/genetics , Homeostasis , Mice , Mice, Knockout , Myocytes, Cardiac/physiology , Sarcoplasmic Reticulum
3.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 28(5): 1710-1717, 2020 Oct.
Article in Chinese | MEDLINE | ID: mdl-33067979

ABSTRACT

AbstractObjective: To investigate the effect of ALAS2 downregulation on the expression of BNIP3L and erythroid differentiation in K562 cells. METHODS: The expression of ALAS2 was down-regulated by transfection of lentivirus, then quantitative real-time PCR was performed to detect the transfection efficiency. Flow cytometry analysis was applied to evaluate apoptosis of cells, erythroid differentiation, mitochondrial membrane potential and reactive oxygen species (ROS) level. Western blot was used to detect the BNIP3L expression, Co-immunoprecipitation was performed to analyze the relationship between ALAS2 and BNIP3L. RESULTS: Compared with sh-NC group, knockdown of ALAS2 induced downregulation of BNIP3L mRNA and protein expression(P<0.01) and erythroid related transcription factors GATA1, Nrf2 expression, as well as reduction of ROS level(P<0.05). Mitochondrial membrane potential of control (sh-NC) group was lower than that of shALAS2 group(P<0.05), but there was no significant change of cell apoptotic rate in two groups. CD71highCD235ahigh + CD71lowCD235ahigh cells of sh-NC and shALAS2 groups were 53.5%, 92.9% at 96 h after hemin induction, respectively. No direct action between ALAS2 and BNIP3L was observed. CONCLUSION: The intracellular heme level can affect the expression of BNIP3L which may be related with the regulation of ROS and transcription factors GATA1 and Nrf2. Higher BNIP3L facilitates cell differentiation but lower BNIP3L is favorable for cells survival.


Subject(s)
Carrier Proteins , Mitophagy , 5-Aminolevulinate Synthetase/metabolism , Apoptosis , Cell Differentiation , Humans , K562 Cells , Membrane Proteins/genetics , Membrane Proteins/metabolism , Proto-Oncogene Proteins/genetics , Tumor Suppressor Proteins
4.
J Physiol Sci ; 61(5): 363-72, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21691940

ABSTRACT

Oxymatrine is one of the alkaloids extracted from the Chinese herb Sophora japonica (Sophora flavescens Ait.) with anti-inflammatory, immune reaction inhibiting, antiviral, and hepatocyte and antihepatic fibrosis protective activities. However, the effect of oxymatrine on heart failure is not yet known. In this study, the effect of oxymatrine on heart failure was investigated using a Sprague-Dawley rat model of chronic heart failure. Morphological findings showed that in the group treated with 50 and 100 mg/kg of oxymatrine; intermyofibrillar lysis disappeared, myofilaments were orderly, closely and evenly arranged; and mitochondria contained tightly packed cristae compared with the heart failure group. We investigated the cytosolic Ca(2+) transients and sarcoplasmic reticulum (SR) Ca(2+) content, and assessed the expression of ryanodine receptor (RyR2), SR-Ca(2+) ATPase (SERCA2a), and L-type Ca(2+) channel (dihydropyridine receptor, DHPR). We found that the cytosolic Ca(2+) transients were markedly increased in amplitude in the medium- (ΔF/F (0) = 26.22 ± 2.01) and high-dose groups (ΔF/F (0) = 29.49 ± 1.17) compared to the heart failure group (ΔF/F (0) = 12.12 ± 1.35, P < 0.01), with changes paralleled by a significant increase in the SR Ca(2+) content (medium-dose group: ΔF/F (0) = 32.20 ± 1.67, high-dose group: ΔF/F (0) = 32.57 ± 1.29, HF: ΔF/F (0) = 17.26 ± 1.05, P < 0.01). Moreover, we demonstrated that the expression of SERCA2a and cardiac DHPR was significantly increased in the medium- and high-dose group compared with the heart failure rats. These findings suggest that oxymatrine could improve heart failure by improving the cardiac function and that this amelioration is associated with upregulation of SERCA2a and DHPR.


Subject(s)
Alkaloids/therapeutic use , Anti-Arrhythmia Agents/therapeutic use , Heart Failure/drug therapy , Quinolizines/therapeutic use , Animals , Calcium/metabolism , Calcium Channels, L-Type/biosynthesis , Calcium Channels, L-Type/drug effects , Calcium Signaling/drug effects , Chronic Disease , Heart Failure/metabolism , Heart Failure/pathology , Male , Mitochondria, Heart/drug effects , Mitochondria, Heart/pathology , Rats , Rats, Sprague-Dawley , Ryanodine Receptor Calcium Release Channel/biosynthesis , Ryanodine Receptor Calcium Release Channel/drug effects , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/biosynthesis , Sarcoplasmic Reticulum Calcium-Transporting ATPases/drug effects
5.
J Physiol Sci ; 60(2): 85-94, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19997992

ABSTRACT

intracellular Ca(2+) handling by the sarcoplasmic reticulum (SR) plays a crucial role in the pathogenesis of heart failure (HF). Despite extensive effort, the underlying causes of abnormal SR Ca(2+) handling in HF have not been clarified. To determine whether the diastolic SR Ca(2+) leak along with reduced Ca(2+) reuptake is required for decreased contractility, we investigated the cytosolic Ca(2+) transients and SR Ca(2+) content and assessed the expression of ryanodine receptor (RyR2), FK506 binding protein (FKBP12.6), SR-Ca(2+) ATPase (SERCA2a), and L-type Ca(2+) channel (LTCC) using an SD-rat model of chronic HF. We found that the cytosolic Ca(2+) transients were markedly reduced in amplitude in HF myocytes (DeltaF/F(0) = 12.3 +/- 0.8) compared with control myocytes (DeltaF/F(0) = 17.7 +/- 1.2, P < 0.01), changes paralleled by a significant reduction in the SR Ca(2+) content (HF: DeltaF/F(0) = 12.4 +/- 1.1, control: DeltaF/F(0) = 32.4 +/- 1.9, P < 0.01). Moreover, we demonstrated that the expression of FKBP12.6 associated with RyR2, SERCA2a, and LTCC was significantly reduced in rat HF. These results provide evidence for phosphorylation-induced detachment of FKBP12.6 from RyRs and down-regulation of SERCA2a and LTCC in HF. We conclude that diastolic SR Ca(2+) leak (due to dissociation of FKBP12.6 from RyR2) along with reduced SR Ca(2+) uptake (due to down-regulation of SERCA2a) and defective E-C coupling (due to down-regulation of LTCC) could contribute to HF.


Subject(s)
Calcium Signaling , Calcium/metabolism , Heart Failure/metabolism , Myocardium/metabolism , Sarcoplasmic Reticulum/metabolism , Animals , Cells, Cultured , Chronic Disease , Male , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...