Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 860: 160541, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36464061

ABSTRACT

The effects of biochemical components and processing variables (e.g., temperatures, solid-liquid ratio, ethanol concentration, and time) during fast hydrothermal liquefaction of a highly CO2-tolerant microalgae (Micractinium sp.) on the product yields and biofuel quality were explored using response surface methodology coupled with central composite design. Results showed that the maximum bio-oil yield (51.4 %) was obtained at 321 °C for 49 min at ethanol concentration of 75 % and solid-liquid ratio of 15.3 %. Among different studied parameters, ethanol concentration showed the highest significant impact on the bio-oil yield due to the low P-value and high F-value in ANOVA analysis. Furthermore, the chemical compositions of bio-oils were determined, which showed that the increase of ethanol concentration in the solvent not only increased the bio-oil yield but also promoted the bio-oil quality by reduction of carboxylic acids and nitrogen-containing compounds with simultaneous enhancement of esters in the bio-oil. The present results show that fast hydrothermal liquefaction is a promising approach to convert the microalgae into high quality biofuels rich in esters.


Subject(s)
Biofuels , Microalgae , Carbon Dioxide , Water/chemistry , Plant Oils , Temperature , Ethanol , Nitrogen Compounds , Biomass
2.
Bioresour Technol ; 317: 123983, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32799082

ABSTRACT

Microalgae biofuels have received extensive attention as a new generation of renewable energy. However, the cost of cultivation and harvest limits the large-scale use of microalgae. An innovative method for harvesting microalgae through flocculation using kitchen wastewater (KWW) and further co-pyrolysis to enhance the crude bio-oil production was proposed. Flocculation efficiency of KWW for Scenedesmus obliquus showed the highest value of 94.09%. Compared with centrifugation and chemical flocculation (CF), the thermogravimetric curve of the sample after KWW flocculation showed different pattern. In addition, bio-oil yield of microalgae harvested through KWW flocculation was also the highest among the three studied harvest methods, reaching 55.59%. Gas chromatographic mass spectrometry (GC-MS) analysis of bio-oil showed that addition of KWW could promote the production of esters and hydrocarbons in comparison to the microalgae harvested by centrifugation or CF.


Subject(s)
Microalgae , Biofuels , Biomass , Flocculation , Pyrolysis , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL
...