Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Opt Express ; 28(9): 13155-13176, 2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32403796

ABSTRACT

Using large amounts of bio-optical data collected in the South China Sea (SCS) from 2003 to 2016, this study checks the consistency between well-known semi-analytical algorithms (SAAs)-the quasi-analytical algorithm (QAA) and the default generalized inherent optical property (GIOP-DC)-in retrieving the non-water absorption coefficient (anw(λ)), phytoplankton absorption coefficient (aph(λ)) and particulate backscattering coefficient (bbp(λ)) from remote-sensing reflectance (Rrs(λ)) data at 412, 443, 490, 531, and 555 nm. The samples from the SCS are further separated into oligotrophic and mesotrophic water types for the comparison of the SAAs. Several findings are made: First, the values of anw(λ) derived from the two SAAs deliver similar performance, with R2 values ranging from 0.74 to 0.85 and 0.74 to 0.87, implying absolute percent error differences (APDs) from 37.93% to 74.88% and from 32.32% to 71.75% for the QAA and GIOP-DC, respectively. The QAA shows a value of R2 between 0.64 and 0.91 and APDs between 43.57% to 83.53%, while the GIOP-DC yields R2 between 0.76 to 0.89 and APDs between 44.65% to 79.46% when estimating aph(λ). The values of bbp(λ) derived from the QAA are closer to the in-situ bbp(λ) values, as indicated by the low values of the normalized centered root-mean-square deviation and normalized standard deviation, which are close to one. Second, a regionally tuned estimation of aph(λ) is proposed and recommended for the SCS. This consistency check of inherent optical properties products from SAAs can serve as reference for algorithm selection for further applications, including primary production, carbon, and biogeochemical models of the SCS, and can provide guidance for improving aph(λ) estimation.

2.
Opt Express ; 22(9): 10467-76, 2014 May 05.
Article in English | MEDLINE | ID: mdl-24921748

ABSTRACT

Phytoplankton size is important for the pelagic food web and oceanic ecosystems. However, the size of phytoplankton is difficult to quantify because of methodological constraints. To address this limitation, we have exploited the phytoplankton package effect to develop a new method for estimating the mean cell size of individual phytoplankton populations. This method was validated using a data set that contained simultaneous measurements of phytoplankton absorption and cell size distributions from 13 phytoplankton species. Comparing with existing methods, our method is more efficient with good accuracy, and it could potentially be applied in current in situ optical instruments.


Subject(s)
Optics and Photonics/methods , Phytoplankton/chemistry , Cell Size , Ecosystem , Oceans and Seas
3.
Mar Pollut Bull ; 83(1): 190-7, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24793781

ABSTRACT

Ocean-color remote sensing has been used as a tool to detect phytoplankton size classes (PSCs). In this study, a three-component model of PSC was reparameterized using seven years of pigment measurements acquired in the South China Sea (SCS). The model was then used to infer PSC in a cyclonic eddy which was observed west of Luzon Island from SeaWiFS chlorophyll-a (chla) and sea-surface height anomaly (SSHA) products. Enhanced productivity and a shift in the PSC were observed, which were likely due to upwelling of nutrient-rich water into the euphotic zone. The supply of nutrients promoted the growth of larger cells (micro- and nanoplankton), and the PSC shifted to greater sizes. However, the picoplankton were still important and contributed ∼48% to total chla concentration. In addition, PSC time series revealed a lag period of about three weeks between maximum eddy intensity and maximum chlorophyll, which may have been related to phytoplankton growth rate and duration of eddy intensity.


Subject(s)
Models, Theoretical , Phytoplankton , Remote Sensing Technology , Seawater/microbiology , China , Chlorophyll/analysis , Chlorophyll A , Cold Temperature , Oceans and Seas , Philippines , Water Movements
4.
Appl Opt ; 52(18): 4249-57, 2013 Jun 20.
Article in English | MEDLINE | ID: mdl-23842167

ABSTRACT

Using a data set of 1333 samples, we assess the spectral absorption relationships of different wave bands for phytoplankton (ph) and particles. We find that a nonlinear model (second-order quadratic equations) delivers good performance in describing their spectral characteristics. Based on these spectral relationships, we develop a method for partitioning the total absorption coefficient into the contributions attributable to phytoplankton [a(ph)(λ)], colored dissolved organic material [CDOM; a(CDOM)(λ)], and nonalgal particles [NAP; a(NAP)(λ)]. This method is validated using a data set that contains 550 simultaneous measurements of phytoplankton, CDOM, and NAP from the NASA bio-Optical Marine Algorithm Dataset. We find that our method is highly efficient and robust, with significant accuracy: the relative root-mean-square errors (RMSEs) are 25.96%, 38.30%, and 19.96% for a(ph)(443), a(CDOM)(443), and the CDOM exponential slope, respectively. The performance is still satisfactory when the method is applied to water samples from the northern South China Sea as a regional case. The computed and measured absorption coefficients (167 samples) agree well with the RMSEs, i.e., 18.50%, 32.82%, and 10.21% for a(ph)(443), a(CDOM)(443), and the CDOM exponential slope, respectively. Finally, the partitioning method is applied directly to an independent data set (1160 samples) derived from the Bermuda Bio-Optics Project that contains relatively low absorption values, and we also obtain good inversion accuracy [RMSEs of 32.37%, 32.57%, and 11.52% for a(ph)(443), a(CDOM)(443), and the CDOM exponential slope, respectively]. Our results indicate that this partitioning method delivers satisfactory performance for the retrieval of a(ph), a(CDOM), and a(NAP). Therefore, this may be a useful tool for extracting absorption coefficients from in situ measurements or remotely sensed ocean-color data.


Subject(s)
Microalgae/chemistry , Organic Chemicals/chemistry , Phytoplankton/chemistry , Water Microbiology , Absorption , Algorithms , Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Optics and Photonics , Remote Sensing Technology , Seawater/chemistry
5.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(4): 1141-5, 2013 Apr.
Article in Chinese | MEDLINE | ID: mdl-23841445

ABSTRACT

Colored dissolved organic matter (CDOM) plays an important role in marine ecosystems. In order to solve the current problems in measurement of CDOM absorption, an automated onboard analyzer based on liquid core waveguides (Teflon AF LWCC/LCW) was constructed. This analyzer has remarkable characteristics including adjusted optical pathlength, wide measurement range, and high sensitivity. The model of filtration and injection can implement the function of automated filtration, sample injection, and LWCC cleaning. The LabVIEW software platform can efficiently control the running state of the analyzer and acquire real time data including light absorption spectra, GPS data, and CTW data. By the comparison experiments and shipboard measurements, it was proved that the analyzer was reliable and robust.

6.
Opt Express ; 20(10): 11189-206, 2012 May 07.
Article in English | MEDLINE | ID: mdl-22565742

ABSTRACT

The scattering and backscattering coefficients of 15 phytoplankton species were determined in the laboratory using the acs and BB9 instruments. The spectral variability of scattering properties was investigated and the homogenous sphere model based on Mie theory was also evaluated. The scattering efficiencies at 510 nm varied from 1.42 to 2.26, and the backscattering efficiencies varied from 0.003 to 0.020. The backscattering ratios at 510 nm varied from 0.17% to 0.97%, with a mean value of 0.58%. The scattering properties were influenced by algal cell size and cellular particulate organic carbon content rather than the chlorophyll a concentration. Comparison of the measured results to the values estimated using the homogenous sphere model showed that: (1) The model could well reproduce the spectral scattering coefficient with relative deviations of 5-39%, which indicates that cell shape and internal structure have no significant effects on predicting the scattering spectra; (2) Although the homogenous sphere model generally reflected the spectral trend of backscattering spectra for most species, it severely underestimated the backscattering coefficients by 1.4-48.6 folds at 510 nm. The deviations for Chaetoceros sp. and Microcystis aeruginosa were large and might be due to algal cell chain links and intracellular gas vacuoles, respectively.


Subject(s)
Environmental Monitoring/methods , Fresh Water/chemistry , Phytoplankton/chemistry , Phytoplankton/metabolism , Scattering, Radiation , Algorithms , China , Chlorophyll , Chlorophyll A , Light , Models, Theoretical , Oceanography/methods , Optics and Photonics , Particle Size , Particulate Matter , Reproducibility of Results , Water Pollutants, Chemical
7.
Guang Pu Xue Yu Guang Pu Fen Xi ; 31(11): 2881-5, 2011 Nov.
Article in Chinese | MEDLINE | ID: mdl-22242477

ABSTRACT

Teflon AF is chemically very inert, quite physically and optically stable, a highly vapor-permeable polymer with optical transparency through much of the UV-Vis region and with an RI lower than that of water, so Teflon AF LWCC/LCW (Long path-length liquid waveguide capillary cell/liquid core waveguides) has been used with a range of different detection techniques, including absorbance spectroscopy, fluorescence spectroscopy, Raman spectroscopy, and gas sensor. The present article describes the properties and the aspects of Teflon AF LWCC/LCW instrumentation and applications. And finally,the future prospect and outlook of Teflon AF LWCC/LCW is also discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...