Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Opt Express ; 30(18): 31728-31741, 2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36242249

ABSTRACT

The information dimension obtained by multispectral ghost imaging is more abundant than in single-band ghost imaging. Existing multispectral ghost imaging systems still meet some shortages, such as complex structure or reconstruction time-consuming. Here, an approach of cosinusoidal encoding multiplexed structured illumination multispectral ghost imaging is proposed. It can capture the multispectral image of the target object within one projection cycle with a single-pixel detector while maintaining high imaging efficiency and low time-consuming. The core of the proposed approach is the employed novel encoding strategy which is apt to decode and reconstruct the multispectral image via the Fourier transform. Specifically, cosinusoidal encoding matrices with specific frequency characteristics are fused with the orthogonal Hadamard basis patterns to form the multiplexed structured illumination patterns. A broadband photomultiplier is employed to collect the backscattered signals of the target object interacted by the corresponding structured illumination. The conventional linear algorithm is applied first to recover the mixed grayscale image of the imaging scene. Given the specific frequency distribution of the constructed cosinusoidal encoding matrices, the mixed grayscale image can be converted to the frequency domain for further decoding processing. Then, the pictures of multiple spectral components can be obtained with some manipulations by applying Fourier transform. A series of numerical simulations and experiments verified our proposed approach. The present cosinusoidal encoding multiplexed structured illumination can also be introduced in many other fields of high-dimensional information acquisition, such as high-resolution imaging and polarization ghost imaging.

2.
Opt Express ; 30(21): 37484-37492, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36258336

ABSTRACT

Long-range light detection and ranging (lidar) of active illumination optical imaging has widespread applications, such as remote sensing, satellite-based global topography, and target recognition and identification. Here, to make trade-offs among imaging efficiency, resolution, receiving field of view, divergence angle, and detected distance, we demonstrate a scanning single-pixel imaging lidar (SSPIL), enjoying the merits of the traditional pointing-by-pointing scanning imaging and single-pixel imaging. The imaging strategy of SSPIL is divided into scanning search and staring imaging processes. These strategies can save most time consumption for imaging background areas and thus improve imaging efficiency. Three imaging experiments were conducted in real urban atmospheric conditions. The preliminary results show SSPIL has the ability for long-range imaging with high efficiency, high resolution, and a large receiving field of view. Also, from the imaging results, we found that multiple samples can improve the SNR of imaging in the real urban atmosphere. The present work may provide a valuable alternative approach in the long-range active illumination optical imaging fields.

3.
Appl Opt ; 58(6): 1537-1546, 2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30874044

ABSTRACT

L625 4-wavelength dual Raman-Mie lidar was used to detect elastically Mie backscattered light at emitting wavelengths (532 and 355 nm) emitted by one Nd:YAG laser, and the nitrogen Raman light (607 and 386 nm) inelastically backscattered by nitrogen molecules at Hefei (117.3°E, 31.9°N), China from 2007 to 2013. From the four return signal profiles, highly accurate aerosol extinction and backscatter coefficients, lidar ratio, Ångström exponent, and aerosol Junge exponent can be determined. Furthermore, with a priori assumption of the real part of complex refractive index nr=1.50, the profiles of more aerosol microphysical parameters can be retrieved with their respective errors in the free troposphere, such as the imaginary part of the refractive index, Junge number density coefficient, and particle mass index. The profiles of aerosol microphysical parameters were obtained for 179 nights. Their variation and statistical features were discussed.

4.
Opt Express ; 26(13): 16547-16559, 2018 Jun 25.
Article in English | MEDLINE | ID: mdl-30119483

ABSTRACT

Single-pixel imaging has the ability to generate images at nonvisible wavelengths and under low light conditions and thus has received increasing attention in recent years. Fourier single-pixel imaging (FSI) utilizes deterministic basis patterns for illumination to greatly improve the quality of image reconstruction. However, the original FSI based on grayscale Fourier basis illumination patterns is limited by the imaging speed as the digital micro-mirror devices (DMD) used to generate grayscale patterns operate at a low refresh rate. In this paper, a new approach is proposed to increase the imaging speed of DMD-based FSI without reducing the imaging spatial resolution. In this strategy, the grayscale Fourier basis patterns are split into a pair of grayscale patterns based on positive/negative pixel values, which are then decomposed into a cluster of binary basis patterns based on the principle of decimalization to binary. These binary patterns are used to illuminate the imaged object. The resulting detected light intensities multiply the corresponding weighted decomposed coefficients and are summed, and the results can be used to generate the Fourier spectrum for the imaged object. Finally, an inverse Fourier transform is applied to the Fourier spectrum to obtain the object image. The proposed technique is verified by a computational simulation and laboratory experiments. Both static and dynamic imaging experiments are carried out to demonstrate the proposed strategy. 128 × 128 pixels dynamic scenes at a speed of ~9 frames-per-second are captured under 22 KHz projection rate using a DMD. The reported technique accelerates the imaging speed for DMD-based FSI and provides an alternative approach to improve FSI efficiency.

5.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(7): 1780-4, 2014 Jul.
Article in Chinese | MEDLINE | ID: mdl-25269279

ABSTRACT

A new method for path transverse wind velocity survey was introduced by analyzing time lagged covariance function of different separation sub-apertures of Hartmann wavefront sensor. A theoretical formula was logically deduced for the light propagation path transverse wind velocity profile. According to the difference of path weighting function for different sub apertures spacing, how to select reasonable path weighting functions was analyzed. Using a Hartmann wavefront sensor, the experiment for measuring path transverse velocity profile along 1 000 m horizontal propagating path was carried out for the first time to our knowledge. The experiment results were as follows. Path transverse averaged velocity from sensor had a good consistency with transverse velocity from the wind anemometer sited near the path receiving end. As the path was divided into two sections, the path transverse velocity of the first section had also a good consistency with that of the second one. Because of different specific underlaying surface of light path, the former was greater than the later over all experiment period. The averaged values were 1.273 and 0.952 m x s(-1) respectively. The path transverse velocity of second section and path transverse averaged velocity had the same trend of decrease and increase with time. The correlation coefficients reached 0.86.

6.
Opt Lett ; 39(5): 1231-4, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24690714

ABSTRACT

For conventional ghost imaging (GI) systems, the object image is obtained based on the reflective or transmissive character of the object. When the object and its background have the same reflectivity or transmittance, conventional GI is helpless in detecting the object from the background. An improvement is to use the polarization components of the reflected or transmitted light. We propose a polarimetric GI system that employs a polarization state generator and a polarization state analyzer. This feature allows for the first time, to the best of our knowledge, imaging the object buried in the same reflectivity or transmittance background, which represents a breakthrough for GI applications. Using a combination of intensity and polarization information, we are better able to distinguish between the background and the different material objects.

7.
Opt Express ; 22(1): 1127-34, 2014 Jan 13.
Article in English | MEDLINE | ID: mdl-24515072

ABSTRACT

By using a charge-coupled device (CCD) as the detector, side-scatter lidar has great potential applications in the near range atmospheric detection. A new inversion method is proposed for CCD side-scatter lidar (Clidar) to retrieve aerosol phase function and vertical backscattering coefficient. Case studies show the retrieved results from Clidar are in good agreements with those obtained from other instruments. It indicates that the new proposed inversion method is reliable and feasible and that the Clidar is practicable.


Subject(s)
Aerosols/analysis , Atmosphere/chemistry , Environmental Monitoring/instrumentation , Lasers , Optical Devices , Radar/instrumentation , Refractometry/instrumentation , Atmosphere/analysis , Equipment Design , Equipment Failure Analysis , Static Electricity
8.
Guang Pu Xue Yu Guang Pu Fen Xi ; 28(8): 1781-5, 2008 Aug.
Article in Chinese | MEDLINE | ID: mdl-18975802

ABSTRACT

Due to lower tropospheric aerosols, the Rayleigh and vibrational Raman methods can't measure lower tropospheric temperature profiles accurately. By using N2 and O2 molecular pure rotational Raman scattering signals, lower tropospheric temperature profiles can be gained without influence of lower tropospheric aerosols. So we decide to use a pure rotational Raman Lidar to get lower tropospheric temperature profiles. At present, because the most light-splitting systems of pure rotational Raman Lidar measure temperature by gaining a single rotational Raman line, the signal to noise ratio (SNR) of these Lidar systems are very low. So we design a new kind of Lidar light-splitting system which can sum different rotational Raman lines and it can improve SNR And we can find the sensitivity of the temperature of the ratios of multi rotational Raman lines is as same as single rotational Raman line's through theoretical analysis. Moreover, we can obtain the temperature profiles with good SNR fromthis new the system with a normal laser and a small telescope up to several kilometers. At last, with the new light-splitting system, the lower tropospheric temperature profiles are measured from 0.3 km to 5 km altitude. They agree well with radiosonde observations, which demonstrate the results of our rotational Raman lidar are reasonable.

9.
Huan Jing Ke Xue ; 29(3): 562-8, 2008 Mar.
Article in Chinese | MEDLINE | ID: mdl-18649508

ABSTRACT

The parameters of AML-2 mobile lidar were introduced, which was based on differential absorption principle and designed by our institute. In Yufa of Beijing, the pollutants including O3, NO2, SO2 in atmospheric boundary layer were monitored in August and September of 2006 under different weather conditions. Vertical profile and diurnal variation of concentrations of these pollutants were analyzed. If without the influence of pollution air transport from south region, the concentrations of these pollutants are low under the overcast weather condition. The concentrations of O3 and NO2 decrease with altitude, and this characteristic is not obvious for SO2, but there is a high concentration layer of SO2 near ground (about 0.6km). The quality of atmosphere Beijing is influenced significantly by air transportation from south region, and the altitude of the severe pollution air transport is about 1km to 1.5km in August 23rd to 25th. As a result, the characteristics of vertical profile and daily variation of the pollutants are changed, and the concentrations of O3, NO2, SO2 in atmospheric boundary layer of Yufa area increased obviously.


Subject(s)
Air Pollutants/analysis , Atmosphere/analysis , Environmental Monitoring/methods , Nitrogen Dioxide/analysis , Air Movements , China , Ozone/analysis , Sulfur Dioxide/analysis
10.
Guang Pu Xue Yu Guang Pu Fen Xi ; 28(10): 2333-7, 2008 Oct.
Article in Chinese | MEDLINE | ID: mdl-19123401

ABSTRACT

Atmospheric aerosol backscattering coefficient ratio can be obtained with the ratio of elastic signal to the total rotational Raman backscattering signal without assuming the ratio of aerosol extinction to backscatter. Generally, the intensity ofpartial rotational Raman spectrum lines instead of the total rotational Raman spectrum lines is measured. The intensity of the total rotational Raman spectrum lines is not dependent on the temperature, but the intensity of the partialrotational Raman spectrumlines is dependent on the temperature. So calculating aerosol backscattering coefficient ratio with the intensity of the partial rotational Raman spectrum lines would lead to an error. In the present paper, the change in the intensity sums of different rotational Raman spectrum lines with temperature was simulated and the errors of aerosol backscattering coefficient ratio derived from them were discussed. A new method was presented for measuring aerosol backscattering coefficient ratio, which needed not to measure the intensity of the total rotational Raman spectrum lines. Aerosol backscattering coefficient ratio could be obtained with the atmospheric temperature and a single rotational Raman spectrum line. Finally, a erosol backscattering coefficient ratio profiles of the atmosphere were acquired with the combined Raman lidar of our lab. The results show that there is no need to assume any relation between aerosol backscattering and extinction or to consider any wavelength calibration to determine the aerosol scattering coefficient.

11.
Opt Lett ; 30(14): 1879-81, 2005 Jul 15.
Article in English | MEDLINE | ID: mdl-16092376

ABSTRACT

A new method is presented to determine the geometrical form factor in Raman lidar. Mie and Raman backscattering signals are acquired by L625 Raman lidar; then the aerosol backscattering ratio and atmospheric molecular density are derived. By normalizing the molecular density of Raman lidar with radiosonde measurements, the geometrical form factors of lidar are obtained. Experimental results indicate this method is feasible.

SELECTION OF CITATIONS
SEARCH DETAIL
...