Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Cureus ; 16(3): e57161, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38681451

ABSTRACT

Precise prognostication is vital for guiding treatment decisions in people diagnosed with pancreatic cancer. Existing models depend on predetermined variables, constraining their effectiveness. Our objective was to explore a novel machine learning approach to enhance a prognostic model for predicting pancreatic cancer-specific mortality and, subsequently, to assess its performance against Cox regression models. Datasets were retrospectively collected and analyzed for 9,752 patients diagnosed with pancreatic cancer and with surgery performed. The primary outcomes were the mortality of patients with pancreatic carcinoma at one year, three years, and five years. Model discrimination was assessed using the concordance index (C-index), and calibration was assessed using Brier scores. The Survival Quilts model was compared with Cox regression models in clinical use, and decision curve analysis was done. The Survival Quilts model demonstrated robust discrimination for one-year (C-index 0.729), three-year (C-index 0.693), and five-year (C-index 0.672) pancreatic cancer-specific mortality. In comparison to Cox models, the Survival Quilts models exhibited a higher C-index up to 32 months but displayed inferior performance after 33 months. A subgroup analysis was conducted, revealing that within the subset of individuals without metastasis, the Survival Quilts models showcased a significant advantage over the Cox models. In the cohort with metastatic pancreatic cancer, Survival Quilts outperformed the Cox model before 24 months but exhibited a weaker performance after 25 months. This study has developed and validated a novel machine learning-based Survival Quilts model to predict pancreatic cancer-specific mortality that outperforms the Cox regression model.

2.
Cureus ; 16(3): e56950, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38533320

ABSTRACT

Congenital diaphragmatic hernias are primarily found in infants and have a high mortality rate due to neonatal respiratory distress. The most common type of congenital diaphragmatic hernia is Bochdalek hernia, which occurs in the posterolateral diaphragm, with the left side being the most commonly affected. However, congenital diaphragmatic hernias are extremely rare in adults and are often misdiagnosed due to their subtle symptoms. Therefore, we suggest that a contrast-enhanced CT scan should be used for early screening and diagnosis in all patients with sudden severe pain or recurrent ambiguous symptoms in the chest and abdomen. This case report presents a rare occurrence of Bochdalek hernia in an adult male. The patient experienced nonspecific abdominal symptoms after eating. The hernia resulted in the displacement of the left kidney, the transverse colon of the splenic flexure, and most of the stomach into the thoracic cavity. This displacement led to atelectasis of the left lung, which reached three-fifths of its capacity. The patient underwent successful treatment using a combination of laparoscopy and open surgery. Follow-up CT scans conducted two weeks, three months, and one year later revealed a stable condition with no complications.

3.
J Affect Disord Rep ; 142023 Dec.
Article in English | MEDLINE | ID: mdl-38105798

ABSTRACT

Background: Numerous studies characterized how resting-state functional connectivities (rsFCs) of the amygdala were disrupted in emotional disorders and varied with emotional traits, including anxiety. With trait anxiety known to diminish with age, a critical issue concerns disambiguating the effects of age and anxiety on amygdala rsFCs in studying the neural bases of individual differences in anxiety. Methods: Two-hundred adults (83 women) 19-85 years of age underwent fMRI and assessment for trait anxiety. Amygdala rsFC correlates were identified using multiple regression with age and anxiety in the same model for all and separately in men and women. The rsFC correlates were examined for age-anxiety interaction. Results: Anxiety was negatively correlated with amygdala-temporooccipital gyri rsFC in all and in men alone. In women, amgydala rsFC with the thalamus/pallidum, angular/supramarginal gyri, inferior temporal gyrus, and posterior insula correlated positively and rsFC with calcarine cortex and caudate correlated negatively with anxiety. We also observed sex differences in age correlation of amgydala-posterior cingulate cortex/precuneus and -insula/temporoparietal rsFCs, with stronger associations in women. In women alone, anxiety and age interacted to determine amygdala rsFC with the thalamus/pallidum, calcarine cortex, and caudate, with older age associated with stronger correlation between anxiety and the rsFCs. Limitations: The findings need to be validated in an independent sample and further explored using task-based data. Conclusion: Highlighting anxiety- and age- specific as well as interacting correlates of amygdala rsFCs and sex differences in the correlates, the findings may shed light on the neural markers of anxiety.

4.
Front Surg ; 10: 1133335, 2023.
Article in English | MEDLINE | ID: mdl-37065996

ABSTRACT

Background: Hepatoid adenocarcinoma of the stomach (HAS) is a highly malignant subtype of gastric carcinoma with specific clinicopathological features and extremely poor prognosis. We present an exceedingly rare case of complete response after chemo-immunotherapy. Case Description: A 48-year-old woman with highly elevated serum alpha-fetoprotein (AFP) level was found to have HAS verified by pathological examination based on gastroscopy. Computed tomography scan was done and TNM staging of the tumor was T4aN3aMx. Programmed cell death ligand-1 (PD-L1) immunohistochemistry was performed, revealing a negative PD-L1 expression. Chemo-immunotherapy including oxaliplatin plus S-1 and PD-1 inhibitor terelizumab was given to this patient for 2 months until the serum AFP level decreased from 748.5 to 12.9 ng/mL and the tumor shrank. D2 radical gastrectomy was then performed and histopathology of the resected specimen revealed that the cancerous cells had disappeared. Pathologic complete response (pCR) was achieved and no evidence of recurrence has been found after 1 year of follow-up. Conclusions: We, for the first time, reported an HAS patient with negative PD-L1 expression who achieved pCR from the combined chemotherapy and immunotherapy. Although no consensus has been reached regarding the therapy, it might provide a potential effective management strategy for HAS patient.

5.
Sci Rep ; 12(1): 801, 2022 01 17.
Article in English | MEDLINE | ID: mdl-35039593

ABSTRACT

This study aims to depict and compare clinical characteristics and risk behavior among groups of individuals using ketamine, polydrugs or smoking cigarette. A total of 185 drug-using participants and 49 smokers participated in this study. A cross-sectional interview was used to collect information on demographics, drug- and sex-related behaviors, HIV serostatus, lower urinary tract symptoms (LUTS), behavioral dispositions. N-back memory test was used to measure short-term memory. Result shows that 10 participants (5.41%) were HIV positive and 14 (7.57%) having LUTS. Individuals with ketamine and polydrugs use have significantly worse drug-related problem than cigarette smokers. Compared to cigarette smokers and ketamine users, individuals with polydrug users scored significantly higher on impulsivity measures. Cigarette smokers performed significantly better than the other two groups on the memory tests. A few patients had been infected with HIV and diagnosed with LUTS. Findings support that memory on short term recalls of patients with ketamine use might be impaired. Study findings warrants the necessarily of further study on influences of using ketamine.


Subject(s)
Impulsive Behavior , Ketamine/adverse effects , Memory, Short-Term , Risk-Taking , Sexual Behavior , Substance-Related Disorders/etiology , Substance-Related Disorders/psychology , Adolescent , Adult , Cross-Sectional Studies , Female , Humans , Lower Urinary Tract Symptoms/chemically induced , Male , Smoking/adverse effects , Young Adult
6.
Brain Sci ; 10(12)2020 Dec 19.
Article in English | MEDLINE | ID: mdl-33352718

ABSTRACT

Aging is associated with structural and functional changes in the hippocampus, and hippocampal dysfunction represents a risk marker of Alzheimer's disease. Previously, we demonstrated age-related changes in reactive and proactive control in the stop signal task, each quantified by the stop signal reaction time (SSRT) and sequential effect computed as the correlation between the estimated stop signal probability and go trial reaction time. Age was positively correlated with the SSRT, but not with the sequential effect. Here, we explored hippocampal gray matter volume (GMV) and activation to response inhibition and to p(Stop) in healthy adults 18 to 72 years of age. The results showed age-related reduction of right anterior hippocampal activation during stop success vs. go trials, and the hippocampal activities correlated negatively with the SSRT. In contrast, the right posterior hippocampus showed higher age-related responses to p(Stop), but the activities did not correlate with the sequential effect. Further, we observed diminished GMVs of the anterior and posterior hippocampus. However, the GMVs were not related to behavioral performance or regional activities. Together, these findings suggest that hippocampal GMVs and regional activities represent distinct neural markers of cognitive aging, and distinguish the roles of the anterior and posterior hippocampus in age-related changes in cognitive control.

7.
J Psychiatr Res ; 122: 54-63, 2020 03.
Article in English | MEDLINE | ID: mdl-31927266

ABSTRACT

BACKGROUND: Previous research has distinguished the activations of the amygdala and bed nucleus of stria terminalis (BNST) during threat-related contingencies. However, how intrinsic connectivities of the amygdala and BNST relate to threat bias remains unclear. Here, we investigated how resting state functional connectivity (rsFC) of the amygdala and BNST in healthy controls (HC) and patients with anxiety-related disorders (PAD) associate with threat bias in a dot-probe task. METHODS: Imaging and behavioral data of 30 PAD and 83 HC were obtained from the Nathan Kline Institute - Rockland sample and processed according to published routines. All imaging results were evaluated at voxel p < 0.001 and cluster p < 0.05, FWE corrected in SPM. RESULTS: PAD and HC did not show differences in whole brain rsFC with either the amygdala or BNST. In linear regressions threat bias was positively correlated with amygdala-thalamus/anterior cingulate cortex (ACC) rsFC in HC but not PAD, and with BNST-caudate rsFC in PAD but not HC. Slope tests confirmed group differences in the correlations between threat bias and amygdala-thalamus/ACC as well as BNST-caudate rsFC. LIMITATIONS: As only half of the patients included were diagnosed with comorbid anxiety, the current findings need to be considered with the clinical heterogeneity and require replication in populations specifically with anxiety disorders. CONCLUSIONS: Together, these results suggest amygdala and BNST connectivities as new neural markers of anxiety disorders. Whereas amygdala-thalamus/ACC rsFC support adaptive regulation of threat response in the HC, BNST-caudate rsFC may reflect maladaptive neural processes that are dominated by anticipatory anxiety.


Subject(s)
Magnetic Resonance Imaging , Septal Nuclei , Amygdala/diagnostic imaging , Anxiety Disorders , Humans , Thalamus
8.
Brain Imaging Behav ; 13(6): 1526-1537, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31011949

ABSTRACT

Previous research has reported reduced efficiency in reactive inhibition, along with reduced brain activations, in older adults. The current study investigated age-related behavioral and neural changes in proactive inhibition, and whether age may influence the relationship between proactive and reactive inhibition. One-hundred-and-forty-nine adults (18 to 72 years) underwent fMRI while performing a stop signal task (SST). Proactive inhibition was defined by the sequential effect, the correlation between the estimated probability of stop signal - p(Stop) - and go trial reaction time (goRT). P(Stop) was estimated trial by trial with a Bayesian belief model; reactive inhibition was defined by the stop signal reaction time (SSRT). Behaviorally the magnitude of sequential effect was not correlated with age, replicating earlier reports of spared proactive control in older adults. Age was associated with greater activations to p(Stop) in the lateral prefrontal cortex (PFC), paracentral lobule, superior parietal lobule, and cerebellum, and activations to goRT in the inferior occipital gyrus (IOG). Granger Causality analysis demonstrated that the PFC Granger caused IOG, with the PFC-IOG connectivity significantly correlated with p(Stop) in older but not younger adults. These findings suggest that the PFC and IOG activations and PFC-IOG connectivity may compensate for proactive control during aging. In contrast, while the activations of the ventromedial prefrontal cortex and caudate head to p(Stop) were negatively correlated with SSRT, relating proactive to reactive control, these activities did not vary with age. These findings highlighted distinct neural processes underlying proactive inhibition and limited neural plasticity to support cognitive control in the aging brain.


Subject(s)
Aging , Brain/physiology , Magnetic Resonance Imaging , Reaction Time/physiology , Adult , Female , Frontal Lobe/physiology , Humans , Inhibition, Psychological , Male , Parietal Lobe/physiology , Prefrontal Cortex/physiology
9.
Brain Connect ; 8(8): 487-502, 2018 10.
Article in English | MEDLINE | ID: mdl-30198312

ABSTRACT

Alcohol misuse is associated with thalamic dysfunction. The thalamus comprises subnuclei that relay and integrate information between cortical and subcortical structures. However, it is unclear how the subnuclei contribute to thalamic dysfunctions in problem drinking. We investigated resting-state functional connectivity (rsFC) of thalamic subregions in 107 nondependent drinkers (57 women), using masks delineated by white matter tractography. Thalamus was parceled into motor, somatosensory, visual, premotor, frontal association, parietal association, and temporal association subregions. Whole-brain linear regression, each against Alcohol Use Disorders Identification Test (AUDIT) and positive alcohol expectancy (AE) score with age as a covariate, was performed for each seed, for men and women combined, and separately. Overall, problem drinking was associated with increased thalamic connectivities, whereas AE was associated with a mixed pattern of increased and decreased connectivities. Motor, premotor, somatosensory, and frontal association thalamic connectivity with bilateral caudate head was positively correlated with AUDIT score in men and women combined. Connectivity of the right caudate head with frontal association and premotor thalamus was also positively correlated with AE score in men and women combined. In contrast, motor and premotor thalamic connectivity with a number of cortical and subcortical structures showed sex differences in the correlation each with AUDIT and AE score. In mediation analyses, AE score completely mediated the correlation between thalamic caudate connectivity and AUDIT score, whereas the model where AE contributed to problem drinking and, in turn, altered thalamic caudate connectivity was not supported. To conclude, thalamic subregional rsFCs showed both shared and distinct changes and sex differences in association with problem drinking and AE. Increased thalamic caudate connectivity may contribute to problem drinking via enhanced AE. The findings suggest the importance of examining thalamic subdivisions and sex in investigating the functional roles of thalamus in problem drinking.


Subject(s)
Alcohol Drinking/pathology , Alcohol Drinking/psychology , Drinking Behavior , Neural Pathways/physiopathology , Rest , Thalamus/physiopathology , Adolescent , Adult , Correlation of Data , Diffusion Tensor Imaging , Female , Frontal Lobe/diagnostic imaging , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Neural Pathways/diagnostic imaging , Oxygen/blood , Sex Characteristics , Surveys and Questionnaires , Thalamus/diagnostic imaging , Young Adult
10.
Hum Brain Mapp ; 39(12): 5085-5096, 2018 12.
Article in English | MEDLINE | ID: mdl-30113124

ABSTRACT

Inhibitory control or the ability to refrain from incorrect responses is a critical executive function known to diminish during aging. Imaging studies have elucidated cerebral changes that may underlie the age-related deficits. However, it remains unclear whether the structural and functional changes occur in the same brain regions and whether reduced gray matter volumes (GMV) mediate decreased activation during inhibition. Here, in a sample of 149 participants, we addressed the issues using structural and functional magnetic resonance imaging. Individual's response inhibition was evaluated by the stop signal reaction time (SSRT) in a stop signal task. The results showed that age was associated with prolonged SSRT across participants. Many cortical and subcortical regions demonstrated age-related reduction in GMV and activation to response inhibition. Additionally, age-related diminution in inhibitory control, as indexed by the SSRT, was associated with both shared and distinct morphometric and functional changes. Voxel-based morphometry demonstrated age-related reduction in GMV in the right dorsolateral prefrontal cortex and caudate head as well as bilateral insula, in association with prolonged SSRT. In a contrast of stop success versus go success trials, age was associated with lower activation in the medial and inferior frontal cortex and inferior parietal cortex. Further, reduction in GMV mediated age-related differences in activations only of the medial prefrontal cortex, providing limited evidence for structure function association. Thus, the decline in inhibitory control, as evidenced in the stop signal task, manifest with both shared and distinct structural and functional processes during aging.


Subject(s)
Aging/physiology , Executive Function/physiology , Gray Matter , Inhibition, Psychological , Prefrontal Cortex , Psychomotor Performance/physiology , Adolescent , Adult , Aged , Female , Gray Matter/anatomy & histology , Gray Matter/diagnostic imaging , Gray Matter/physiology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Prefrontal Cortex/anatomy & histology , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiology , Young Adult
11.
Neuroimage Clin ; 18: 793-801, 2018.
Article in English | MEDLINE | ID: mdl-29876265

ABSTRACT

Graphic theoretical metrics have become increasingly popular in characterizing functional connectivity of neural networks and how network connectivity is compromised in neuropsychiatric illnesses. Here, we add to this literature by describing dynamic network connectivities of 78 cocaine dependent (CD) and 85 non-drug using healthy control (HC) participants who underwent fMRI during performance of a stop signal task (SST). Compared to HC, CD showed prolonged stop signal reaction time (SSRT), consistent with deficits in response inhibition. In graph theoretical analysis of dynamic functional connectivity, we examined temporal flexibility and spatiotemporal diversity of 14 networks covering the whole brain. Temporal flexibility quantifies how frequently a brain region interacts with regions of other communities across time, with high temporal flexibility indicating that a region interacts predominantly with regions outside its own community. Spatiotemporal diversity quantifies how uniformly a brain region interacts with regions in other communities over time, with high spatiotemporal diversity indicating that the interactions are more evenly distributed across communities. Compared to HC, CD exhibited decreased temporal flexibility and increased spatiotemporal diversity in the great majority of neural networks. The graph metric measures of the default mode network negatively correlated with SSRT in CD but not HC. The findings are consistent with diminished temporal flexibility and a compensatory increase in spatiotemporal diversity, in association with impairment of a critical executive function, in cocaine addiction. More broadly, the findings suggest that graph theoretical metrics provide new insights for connectivity analyses to elucidate network dysfunction that may elude conventional measures.


Subject(s)
Brain/physiopathology , Cocaine-Related Disorders/physiopathology , Cocaine/adverse effects , Neural Pathways/physiopathology , Adult , Brain Mapping , Cognition/physiology , Executive Function/physiology , Female , Humans , Magnetic Resonance Imaging/methods , Male , Reaction Time/physiology
12.
Article in English | MEDLINE | ID: mdl-29859929

ABSTRACT

BACKGROUND: Error-related brain activities are altered in individuals with substance use disorders. Here we examined error-related activities in relation to problem drinking in nondependent alcohol drinkers. In particular, we investigated sex differences and whether altered error responses are related to post-error behavioral control. METHODS: A sample of 145 nondependent drinkers (77 women) performed the stop-signal task during functional magnetic resonance imaging. Imaging data were processed and modeled using statistical parametric mapping. Independent sample t test and linear regression were employed to examine sex differences in error response and relationship between error response and problem drinking. RESULTS: Compared with men, women showed greater error-related (stop error > go success) activations in the bilateral thalamus, right middle/superior temporal cortex, and bilateral dorsal anterior cingulate cortex. In whole-brain linear regression of error responses against the Alcohol Use Disorders Identification Test score, a wide swath of cortical and subcortical regions, including the thalamus, showed decreased activation in association with problem drinking in women but not in men. However, men and women were not different in the extent of post-error slowing and decreased thalamic error response in association with problem drinking was not related to the extent of post-error slowing in women. CONCLUSIONS: The results suggest sex differences in error-related activations with heavier drinking associated with reduced error activations in women but not in men. These differences in cerebral activations may reflect higher physiological arousal in response to errors and greater vulnerability of saliency-related arousal response to problem drinking in female as compared with male social drinkers.


Subject(s)
Alcohol Drinking/physiopathology , Alcoholism/physiopathology , Brain/physiopathology , Sex Characteristics , Adult , Brain/physiology , Brain Mapping/methods , Female , Humans , Lactation/physiology , Magnetic Resonance Imaging/methods , Male , Young Adult
13.
Front Hum Neurosci ; 12: 151, 2018.
Article in English | MEDLINE | ID: mdl-29780308

ABSTRACT

In a study of the stop signal task (SST) we employed Bayesian modeling to compute the estimated likelihood of stop signal or P(Stop) trial by trial and identified regional processes of conflict anticipation and response slowing. A higher P(Stop) is associated with prolonged go trial reaction time (goRT)-a form of sequential effect-and reflects proactive control of motor response. However, some individuals do not demonstrate a sequential effect despite similar go and stop success (SS) rates. We posited that motor preparation may disrupt proactive control more in certain individuals than others. Specifically, the time interval between trial and go signal onset-the fore-period (FP)-varies across trials and a longer FP is associated with a higher level of motor preparation and shorter goRT. Greater motor preparatory activities may disrupt proactive control. To test this hypothesis, we compared brain activations and Granger causal connectivities of 81 adults who demonstrated a sequential effect (SEQ) and 35 who did not (nSEQ). SEQ and nSEQ did not differ in regional activations to conflict anticipation, motor preparation, goRT slowing or goRT speeding. In contrast, SEQ and nSEQ demonstrated different patterns of Granger causal connectivities. P(Stop) and FP activations shared reciprocal influence in SEQ but FP activities Granger caused P(Stop) activities unidirectionally in nSEQ, and FP activities Granger caused goRT speeding activities in nSEQ but not SEQ. These findings support the hypothesis that motor preparation disrupts proactive control in nSEQ and provide direct neural evidence for interactive go and stop processes.

14.
Drug Alcohol Depend ; 185: 173-180, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29454928

ABSTRACT

Alcohol misuse is associated with dysfunction of the amygdala-prefrontal cortical circuit. The amygdala and its cortical targets show decreased activity during a variety of task challenges in individuals engaged in problem drinking. On the other hand, it is less clear how amygdala resting state functional connectivity (rsFC) may be altered in association with alcohol misuse and whether such changes are restricted to prefrontal cortical structures. Further, the influences of comorbid substance use and depression and potential sex differences have not been assessed in earlier work. Here, with fMRI data from a Nathan Kline Institute/Rockland sample of 83 non-dependent alcohol drinkers (26 men), we addressed changes in whole brain rsFC of the amygdala in association with problem drinking as indexed by an alcohol involvement score. Imaging data were processed with Statistical Parametric Mapping following standard routines and all results were examined at voxel p < 0.001 uncorrected in combination with cluster p < 0.05 corrected for false discovery rate. Alcohol misuse was correlated with decreased amygdala connectivity with the dorsal anterior cingulate cortex (dACC) irrespective of depression and other substance use. Changes in amygdala-dACC connectivity manifested in the latero-basal subdivision of the amygdala. Further, men as compared to women showed a significantly stronger relationship in decreased amygdala-dACC connectivity and problem drinking, although it should be noted that men also showed a trend toward higher alcohol involvement score than women. The findings add to a growing literature documenting disrupted amygdala-prefrontal cortical functions in relation to alcohol misuse.


Subject(s)
Alcoholism/physiopathology , Amygdala/physiopathology , Nerve Net/physiopathology , Sex Characteristics , Adult , Aged , Alcoholism/diagnostic imaging , Amygdala/diagnostic imaging , Brain Mapping/methods , Female , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Nerve Net/diagnostic imaging , Prefrontal Cortex/physiopathology
15.
Neuroscience ; 357: 273-284, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28627420

ABSTRACT

Executive control requires behavioral adaptation to environmental contingencies. In the stop signal task (SST), participants exhibit slower go trial reaction time (RT) following a stop trial, whether or not they successfully interrupt the motor response. In previous fMRI studies, we demonstrated activation of the right-hemispheric ventrolateral prefrontal cortex, in the area of inferior frontal gyrus, pars opercularis (IFGpo) and anterior insula (AI), during post-error slowing (PES). However, in similar analyses we were not able to identify regional activities during post-success slowing (PSS). Here, we revisited this issue in a larger sample of participants (n=100) each performing the SST for 40 min during fMRI. We replicated IFGpo/AI activation to PES (p≤0.05, FWE corrected). Further, PSS engages decreased activation in a number of cortical regions including the left inferior frontal cortex (IFC; p≤0.05, FWE corrected). We employed Granger causality mapping to identify areas that provide inputs each to the right IFGpo/AI and left IFC, and computed single-trial amplitude (STA) of stop trials of these input regions as well as the STA of post-stop trials of the right IFGpo/AI and left IFC. The STAs of the right inferior precentral sulcus and supplementary motor area (SMA) and right IFGpo/AI were positively correlated and the STAs of the left SMA and left IFC were positively correlated (slope>0, p's≤0.01, one-sample t test), linking regional responses during stop success and error trials to those during PSS and PES. These findings suggest distinct neural mechanisms to support PSS and PES.


Subject(s)
Brain/physiology , Executive Function/physiology , Feedback, Psychological/physiology , Psychomotor Performance/physiology , Reaction Time/physiology , Adult , Brain/diagnostic imaging , Brain Mapping , Female , Humans , Inhibition, Psychological , Magnetic Resonance Imaging , Male , Neural Pathways/diagnostic imaging , Neural Pathways/physiology , Neuropsychological Tests
16.
Neuroimage Clin ; 14: 750-759, 2017.
Article in English | MEDLINE | ID: mdl-28413777

ABSTRACT

Alcohol expectancy and impulsivity are implicated in alcohol misuse. However, how these two risk factors interact to determine problem drinking and whether men and women differ in these risk processes remain unclear. In 158 social drinkers (86 women) assessed for Alcohol Use Disorder Identification Test (AUDIT), positive alcohol expectancy, and Barratt impulsivity, we examined sex differences in these risk processes. Further, with structural brain imaging, we examined the neural bases underlying the relationship between these risk factors and problem drinking. The results of general linear modeling showed that alcohol expectancy best predicted problem drinking in women, whereas in men as well as in the combined group alcohol expectancy and impulsivity interacted to best predict problem drinking. Alcohol expectancy was associated with decreased gray matter volume (GMV) of the right posterior insula in women and the interaction of alcohol expectancy and impulsivity was associated with decreased GMV of the left thalamus in women and men combined and in men alone, albeit less significantly. These risk factors mediated the correlation between GMV and problem drinking. Conversely, models where GMV resulted from problem drinking were not supported. These new findings reveal distinct psychological factors that dispose men and women to problem drinking. Although mediation analyses did not determine a causal link, GMV reduction in the insula and thalamus may represent neural phenotype of these risk processes rather than the consequence of alcohol consumption in non-dependent social drinkers. The results add to the alcohol imaging literature which has largely focused on dependent individuals and help elucidate alterations in brain structures that may contribute to the transition from social to habitual drinking.


Subject(s)
Alcohol Drinking/psychology , Alcoholism , Brain/diagnostic imaging , Impulsive Behavior/physiology , Sex Characteristics , Adult , Alcoholism/diagnostic imaging , Alcoholism/physiopathology , Alcoholism/psychology , Brain Mapping , Female , Humans , Linear Models , Magnetic Resonance Imaging , Male , Psychiatric Status Rating Scales , Surveys and Questionnaires , Young Adult
17.
Front Hum Neurosci ; 11: 52, 2017.
Article in English | MEDLINE | ID: mdl-28223929

ABSTRACT

Dysfunction of the dopaminergic ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) is implicated in psychiatric disorders including attention-deficit/ hyperactivity disorder (ADHD), addiction, schizophrenia and movement disorders such as Parkinson's disease (PD). Although the prevalence of these disorders varies by age and sex, the underlying neural mechanism is not well understood. The objective of this study was to delineate the distinct resting state functional connectivity (rsFC) of the VTA and SNc and examine the effects of age, from young to middle-adulthood, and sex on the rsFC of these two dopaminergic structures in a data set of 250 healthy adults (18-49 years of age, 104 men). Using blood oxygenation level dependent (BOLD) signals, we correlated the time course of the VTA and SNc to the time courses of all other brain voxels. At a corrected threshold, paired t-test showed stronger VTA connectivity to bilateral angular gyrus and superior/middle and orbital frontal regions and stronger SNc connectivity to the insula, thalamus, parahippocampal gyrus (PHG) and amygdala. Compared to women, men showed a stronger VTA/SNc connectivity to the left posterior orbital gyrus. In linear regressions, men but not women showed age-related changes in VTA/SNc connectivity to a number of cortical and cerebellar regions. Supporting shared but also distinct cerebral rsFC of the VTA and SNc and gender differences in age-related changes from young and middle adulthood in VTA/SNc connectivity, these new findings help advance our understanding of the neural bases of many neuropsychiatric illnesses that implicate the dopaminergic systems.

18.
Brain Struct Funct ; 222(6): 2573-2583, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28110447

ABSTRACT

Resting-state functional connectivity (rsFC) is widely used to examine cerebral functional organization. The ventral striatum (VS) is critical to motivated behavior, with extant studies suggesting functional hemispheric asymmetry. The current work investigated differences in rsFC between the left (L) and right (R) VS and explored gender differences in the extent of functional lateralization. In 106 adults, we computed a laterality index (fcLI) to query whether a target region shows greater or less connectivity to the L vs R VS. A total of 45 target regions with hemispheric masks were examined from the Automated Anatomic Labeling atlas. One-sample t test was performed to explore significant laterality in the whole sample and in men and women separately. Two-sample t test was performed to examine gender differences in fcLI. At a corrected threshold (p < 0.05/45 = 0.0011), the dorsomedial prefrontal cortex (dmPFC) and posterior cingulate cortex (pCC) showed L lateralization and the intraparietal sulcus (IPS) and supramarginal gyrus (SMG) showed R lateralization in VS connectivity. Except for the pCC, these findings were replicated in a different data set (n = 97) from the Human Connectome Project. Furthermore, the fcLI of VS-pCC was negatively correlated with a novelty seeking trait in women but not in men. Together, the findings may suggest a more important role of the L VS in linking saliency response to self control and other internally directed processes. Right lateralization of VS connectivity to the SMG and IPS may support attention and action directed to external behavioral contingencies.


Subject(s)
Cerebrum/physiology , Functional Laterality , Neural Pathways/physiology , Ventral Striatum/physiology , Adult , Age Factors , Brain Mapping/methods , Cerebrum/diagnostic imaging , Exploratory Behavior , Female , Humans , Image Interpretation, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Neural Pathways/drug effects , Personality , Sex Factors , Ventral Striatum/diagnostic imaging , Young Adult
19.
Nicotine Tob Res ; 19(4): 452-459, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-27613921

ABSTRACT

INTRODUCTION: Numerous studies have characterized impaired cerebral functioning in nicotine-addicted individuals. Whereas nicotine interacts with multiple neurotransmitters in cortical and subcortical circuits, it directly targets the cholinergic system, sourced primarily from the basal nucleus of Meynert (BNM). However, no studies have examined how this cholinergic system is influenced by cigarette smoking. Here, we addressed this gap of research. METHODS: Using a dataset from the Functional Connectome Projects, we investigated this issue by contrasting seed-based BNM connectivity of 40 current smokers and 170 age- and gender-matched nonsmokers. We followed our data analytic routines in recent work and examined differences between smokers and nonsmokers in men and women combined as well as separately. RESULTS: Compared to nonsmokers, female but not male smokers demonstrated greater positive BNM connectivity to the supplementary motor area, bilateral anterior insula, and right superior temporal/supramarginal gyri as well as greater negative connectivity to the posterior cingulate cortex and precuneus. Further, BNM connectivity to the supplementary motor area is negatively correlated to the Fagerström Test for Nicotine Dependence score in male but not female smokers. CONCLUSIONS: Along with a previous report of upregulated nicotinic acetylcholine receptor in male but not female smokers, these new findings highlight functional changes of the cholinergic systems in cigarette smokers. The results suggest sex-specific differences in cholinergic dysregulation and a need for multiple imaging modalities to capture the neural markers of nicotine addiction. IMPLICATIONS: Nicotine influences cognition via cholinergic projections of the basal forebrain to the cerebral cortex. This study examined changes in resting-state whole-brain functional connectivity of the BNM in cigarette smokers. The new findings elucidate for the first time sex differences in BNM-cerebral connectivity in cigarette smoking.


Subject(s)
Basal Nucleus of Meynert/physiology , Rest/physiology , Smoking/physiopathology , Tobacco Use Disorder/physiopathology , Adult , Female , Humans , Male
20.
J Neurosci ; 36(50): 12688-12696, 2016 12 14.
Article in English | MEDLINE | ID: mdl-27974616

ABSTRACT

A hallmark of cognitive control is the ability to rein in impulsive responses. Previously, we used a Bayesian model to describe trial-by-trial likelihood of the stop signal or p(Stop) and related regional activations to p(Stop) to response slowing in a stop signal task. Here, we characterized the regional processes of conflict anticipation in association with intersubject variation in impulse control in 114 young adults. We computed the stop signal reaction time (SSRT) and a measure of motor urgency, indexed by the reaction time (RT) difference between go and stop error trials or "GoRT - SERT," where GoRT is the go trial RT and SERT is the stop error RT. Motor urgency and SSRT were positively correlated across subjects. A linear regression identified regional activations to p(Stop), each in correlation with SSRT and motor urgency. We hypothesized that shared neural activities mediate the correlation between motor urgency and SSRT in proactive control of impulsivity. Activation of the ventromedial prefrontal cortex, posterior cingulate cortex and right superior frontal gyrus (SFG) during conflict anticipation correlated negatively with the SSRT. Activation of the right SFG also correlated negatively with GoRT - SERT. Therefore, activation of the right SFG was associated with more efficient response inhibition and less motor urgency. A mediation analysis showed that right SFG activation to conflict anticipation mediates the correlation between SSRT and motor urgency bidirectionally. The current results highlight a specific role of the right SFG in translating conflict anticipation to the control of impulsive response, which is consistent with earlier studies suggesting its function in action restraint. SIGNIFICANCE STATEMENT: Individuals vary in impulse control. However, the neural bases underlying individual variation in proactive control of impulsive responses remain unknown. Here, in a large sample of young adults, we showed that activation of the right superior frontal gyrus (SFG) during conflict anticipation is positively correlated with the capacity of inhibitory control and negatively with motor urgency in the stop signal task. Importantly, activity of the right SFG mediates the counteracting processes of inhibitory control and motor urgency across subjects. The results support a unique role of the right SFG in individual variation in cognitive control.


Subject(s)
Frontal Lobe/physiology , Impulsive Behavior , Individuality , Anticipation, Psychological/physiology , Conflict, Psychological , Executive Function/physiology , Female , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Psychomotor Performance/physiology , Reaction Time/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...