Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Nano ; 18(20): 12672-12706, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38717959

ABSTRACT

Since their introduction in 2004, high entropy alloys (HEAs) have attracted significant attention due to their exceptional mechanical and functional properties. Advances in our understanding of atomic-scale ordering and phase formation in HEAs have facilitated the development of fabrication techniques for synthesizing nanostructured HEAs. These materials hold immense potential for applications in various fields including automobile industries, aerospace engineering, microelectronics, and clean energy, where they serve as either structural or functional materials. In this comprehensive Review, we conduct an in-depth analysis of the mechanical and functional properties of nanostructured HEAs, with a particular emphasis on the roles of different nanostructures in modulating these properties. To begin, we explore the intrinsic and extrinsic factors that influence the formation and stability of nanostructures in HEAs. Subsequently, we delve into an examination of the mechanical and electrocatalytic properties exhibited by bulk or three-dimensional (3D) nanostructured HEAs, as well as nanosized HEAs in the form of zero-dimensional (0D) nanoparticles, one-dimensional (1D) nanowires, or two-dimensional (2D) nanosheets. Finally, we present an outlook on the current research landscape, highlighting the challenges and opportunities associated with nanostructure design and the understanding of structure-property relationships in nanostructured HEAs.

2.
Int J Mol Sci ; 24(21)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37958988

ABSTRACT

The outbreak of Fusarium head blight (FHB) poses a serious threat to wheat production as it leads to both significant yield losses and accumulation of several mycotoxins including deoxynivalenol (DON) in the grains, which are harmful to human and livestock. To date, hundreds of FHB-resistance-related quantitative trait loci (QTLs) have been reported, but only a few of them have been cloned and used for breeding. Small interfering RNAs (siRNA) have been reported in plants to mediate host defense against pathogens, but they have rarely been reported in wheat-FHB interaction. In order to identify the key siRNAs that can potentially be used in the improvement of resistance to FHB, siRNAs from the spikes of an FHB-resistant variety Sumai 3 and an FHB-susceptible variety of Chinese Spring (CS) were sequenced after F. graminearum infection and mock inoculation, respectively. The expression patterns of the siRNAs of interest were analyzed. A total of 4019 siRNAs of high-confidence were identified, with 131 being CS-specific, 309 Sumai 3-specific and 3071 being common in both varieties. More than 87% of these siRNAs were 24 nt in length. An overall down-regulation trend was found for siRNAs in the spikes of both varieties after being infected with F. graminearum. The expression patterns for Triticum aestivum Dicer-like 3 (TaDCL3) that synthesizes 24 nt siRNAs were validated by qRT-PCR, which were positively correlated with those of the siRNAs. A total of 85% of the differentially expressed genes putatively targeted by the siRNAs were significantly up-regulated after infection, showing a negative correlation with the overall down-regulated expression of siRNAs. Interestingly, the majority of the up-regulated genes are annotated as disease resistance. These results suggested that the inhibition of siRNA by F. graminearum up-regulated the disease resistance genes, which were putatively suppressed by siRNAs through RNA-directed DNA methylation (RdDM). Consequently, the resistant capability to F. graminearum infection was enhanced. This study provides novel clues for investigating the function of siRNA in wheat-F. graminearum interaction.


Subject(s)
Fusariosis , Fusarium , Humans , Triticum/genetics , Triticum/metabolism , Disease Resistance/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Plant Breeding , Fusarium/genetics , Plant Diseases/genetics
3.
Front Plant Sci ; 14: 1283457, 2023.
Article in English | MEDLINE | ID: mdl-37954986

ABSTRACT

Introduction: Soil quality plays an irreplaceable role in plant growth for restored grassland. However, few studies investigate the comprehensive effects considering soil and vegetation properties during the restoration of desertified grassland, which restrict the virtuous circle of restored grassland ecosystem. Methods: By setting three restoration patterns of enclosure plus grass (EG), enclosure intercropping shrub-grass (ESG), and enclosure plus sand-barrier and shrub-grass (ESSG) with three different restoration years (≤5, 7-9, and ≥15 years), we selected 28 physicochemical and microbial indicators, and constructed a minimum data set (MDS) to analyze the influences of restoration measurements on soil quality and ecological benefits in alpine desertified grassland. Results: The results showed that the MDS comprised seven soil quality indicators: silt, total nitrogen (TN), carbon-nitrogen ratio (C/N), total potassium (TK), microbial biomass carbon (MBC), microbial biomass phosphorus (MBP), and fungi. Soil quality index (SQI) and ecological restoration effect index (EREI) in restored grasslands significantly increased by 144.83-561.24% and 87.21-422.12%, respectively, compared with unrestored grassland, and their positive effects increased with extending restoration years. The increasing effects of SQI and EREI were the highest in ESSG, followed by EG and ESG. The increasing rate of SQI began to decrease after 5 years in EG and ESG, while it decreased after 7-9 years in ESSG, and that of EREI in EG was lower than ESSG in each restoration year. Our work revealed that ESSG was the optimum restoration pattern for desertified grassland, and anthropogenic monitoring and management measurements such as applying organic fertilization and mowing return reasonably should be carried out at the beginning of 5 years in EG and ESG as well as 7 years in ESSG to maintain sustainable ecological benefits. Discussion: The study highlights that soil quality, including microbial properties, is a key factor to evaluate the restoration effects of desertified grassland.

4.
J Food Prot ; 86(7): 100078, 2023 07.
Article in English | MEDLINE | ID: mdl-37295216

ABSTRACT

The purpose of the study was to investigate the mechanism of inactivation of Serratia liquefaciens by different treatments, namely corona discharge plasma (CDP), ε-polylysine (ε-PL), and corona discharge plasma combined with ε-polylysine (CDP plus ε-PL). The results showed that the combined treatment of CDP and ε-PL exhibited significant antibacterial effects. The total number of colonies of S. liquefaciens dropped by 0.49 log CFU/mL following 4 min of CDP treatment, 4MIC ε-PL treatment for 6 h alone decreased the amounts of colonies by 2.11 log CFU/mL, and 6 h of treatment with 4MIC ε-PL after the bacterium was treated with CDP could decrease the number of colonies by 6.77 log CFU/mL. Scanning electron microscopy images showed that the combined treatment of CDP and ε-PL caused the most serious damage to the cell morphology. Electrical conductivity, nucleic acid, and PI staining indicated that the combined treatment dramatically enhanced the permeability of the cell membrane. In addition, the combined treatment led to a significant decrease in SOD and POD enzyme activities in S. liquefaciens, which prevented energy metabolism. Finally, the determination of free and intracellular ε-PL concentrations confirmed that the treatment of CDP could cause the bacteria to bind more ε-PL and exert more significant bacterial inhibition. Therefore, CDP and ε-PL had a synergistic effect in the inhibition of S. liquefaciens.


Subject(s)
Polylysine , Serratia liquefaciens , Polylysine/pharmacology , Polylysine/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Cell Membrane/metabolism , Microscopy, Electron, Scanning
5.
Front Plant Sci ; 13: 832800, 2022.
Article in English | MEDLINE | ID: mdl-35360333

ABSTRACT

Fusarium graminearum (F. graminearum) can cause huge yield reductions and contamination of grain with deoxynivalenol (DON), and thus is one of the most problematic pathogen of wheat worldwide. Although great efforts have been paid and great achievements have been made to control the pathogens, there is still a wide gap for understanding the mechanism underlying F. graminearum resistance. Plant LACCASEs (LACs) catalyze the oxidative polymerization of monolignols by reinforcing cell-wall of various cell types to provide mechanical support, xylem sap transportation, and defense against pest and pathogens. To date, little has been known about LAC genes in bread wheat and their potential roles in wheat-F. graminearum interaction. Through systematic analysis of the genome-wide homologs and transcriptomes of wheat, a total of 95 Triticum aestivum laccases (TaLACs) were identified, and 14 of them were responsive to F. graminearum challenge. 3D structure modelings of the 14 TaLAC proteins showed that only TaLAC78 contains the entire activity center for oxidation and the others lack the type 1 copper ion ligand (T1Cu). Both amino acid sequence alignment and three-dimensional reconstruction after amino acid mutation showed that the loss of T1Cu is not only related to variation of the key amino acid coordinating T1Cu, but also closely related to the flanking amino acids. Significantly differential temporal expression patterns of TaLACs suggested that their subfunctionalization might occur. Promoter array analysis indicated that the induction of TaLACs may be closely associated with salicylic acid signaling, dehydration, and low-oxygen stress under F. graminearum infection. Molecular docking simulation demonstrated that TaLACs can not only catalyze lignin as a substrate, but also interact with DON, which may be docked into the binding position of the monolignols, where the LACs recognize substrates. The current study provides clues for exploring the novel functions of TaLACs in wheat resistance to F. graminearum, and TaLACs maybe candidates for conferring a high level of resistance against F. graminearum in wheat.

6.
BMC Plant Biol ; 22(1): 3, 2022 Jan 03.
Article in English | MEDLINE | ID: mdl-34979923

ABSTRACT

BACKGROUND: Fusarium head blight (FHB) caused by Fusarium graminearum is a devastating fungal disease of wheat. The mechanism underlying F. graminearum-wheat interaction remains largely unknown. tRNA-derived fragments (tRFs) are RNase-dependent small RNAs derived from tRNAs, and they have not been reported in wheat yet, and whether tRFs are involved in wheat-F. graminearum interactions remains unknown. RESULTS: Herein, small RNAs from the spikelets inoculated with F. graminearum and mock from an FHB-susceptible variety Chinese Spring (CS) and an FHB-resistant variety Sumai3 (SM) were sequenced respectively. A total of 1249 putative tRFs were identified, in which 15 tRFs was CS-specific and 12 SM-specific. Compared with mock inoculation, 39 tRFs were significantly up-regulated across both wheat varieties after F. graminearum challenge and only nine tRFs were significantly down-regulated. tRFGlu, tRFLys and tRFThr were dramatically induced by F. graminearum infection, with significantly higher fold changes in CS than those in SM. The expression patterns of the three highly induced tRFs were further validated by stem-loop qRT-PCR. The accumulation of tRFs were closely related to ribonucleases T2 family members, which were induced by F. graminearum challenge. The tRFs' targets in host were predicted and were validated by RNA sequencing. CONCLUSION: Integrative analysis of the differentially expressed tRFs and their candidate targets indicated that tRFGlu, tRFLys and tRFThr might negatively regulate wheat resistance to FHB. Our results unvealed the potential roles of tRFs in wheat-F. graminearum interactions.


Subject(s)
Fusarium/physiology , Plant Diseases/genetics , RNA, Plant/genetics , RNA, Transfer/genetics , Triticum/genetics , Disease Susceptibility/microbiology , Plant Diseases/microbiology , RNA, Plant/metabolism , RNA, Transfer/metabolism , Triticum/metabolism , Triticum/microbiology
7.
Langmuir ; 37(5): 1651-1661, 2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33507761

ABSTRACT

Gas hydrate interparticle cohesive forces are important to determine the hydrate crystal particle agglomeration behavior and subsequent hydrate slurry transport that is critical to preventing potentially catastrophic consequences of subsea oil/gas pipeline blockages. A unique high-pressure micromechanical force apparatus has been employed to investigate the effect of the molecular structure of industrially relevant hydrate antiagglomerant (AA) inhibitors on gas hydrate crystal interparticle interactions. Four AA molecules with known detailed structures [quaternary ammonium salts with two long tails (R1) and one short tail (R2)] in which the R1 has 12 carbon (C12) and 8 carbon (C8) and saturated (C-C) versus unsaturated (C═C) bonding are used in this work to investigate their interfacial activity to suppress hydrate crystal interparticle interactions in the presence of two liquid hydrocarbons (n-dodecane and n-heptane). All AAs were able to reduce the interparticle cohesive force from the baseline (23.5 ± 2.5 mN m-1), but AA-C12 shows superior performance in both liquid hydrocarbons compared to the other AAs. The interfacial measurements indicate that the AA with an R1 longer alkyl chain length can provide a denser barrier, and the AA molecules may have higher packing density when the AA R1 alkyl tail length is comparable to that of the liquid hydrocarbon chain on the gas hydrate crystal surface. Increasing the salinity can promote the effectiveness of an AA molecule and can also eliminate the effect of longer particle contact times, which typically increases the interparticle cohesive force. This work reports the first experimental investigation of high-performance known molecular structure AAs under industrially relevant conditions, showing that these molecules can reduce the interfacial tension and increase the gas hydrate-water contact angle, thereby minimizing the gas hydrate interparticle interactions. The structure-performance relation reported in this work can be used to help in the design of improved AA inhibitor molecules that will be critical to industrial hydrate crystal slurry transport.

8.
RSC Adv ; 10(52): 31027-31038, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-35520650

ABSTRACT

Anti-agglomerants (AAs), both natural and commercial, are currently being considered for gas hydrate risk management of petroleum pipelines in offshore operations. However, the molecular mechanisms of the interaction between the AAs and gas hydrate surfaces and the prevention of hydrate agglomeration remain critical and complex questions that need to be addressed to advance this technology. Here, we use molecular dynamics (MD) simulations to investigate the effect of model surfactant molecules (polynuclear aromatic carboxylic acids) on the agglomeration behaviour of gas hydrate particles and disruption of the capillary liquid bridge between hydrate particles. The results show that the anti-agglomeration pathway can be divided into two processes: the spontaneous adsorption effect of surfactant molecules onto the hydrate surface and the weakening effect of the intensity of the liquid bridge between attracted hydrate particles. The MD simulation results also indicate that the anti-agglomeration effectiveness of surfactants is determined by the intrinsic nature of their molecular functional groups. Additionally, we find that surfactant molecules can affect hydrate growth, which decreases hydrate particle size and correspondingly lower the risk of hydrate agglomeration. This study provides molecular-level insights into the anti-agglomeration mechanism of surfactant molecules, which can aid in the ultimate application of natural or commercial AAs with optimal anti-agglomeration properties.

9.
Langmuir ; 33(42): 11299-11309, 2017 10 24.
Article in English | MEDLINE | ID: mdl-28922923

ABSTRACT

The interfacial properties and mechanisms of gas hydrate systems play a major role in controlling their interparticle and surface interactions, which is desirable for nearly all energy applications of clathrate hydrates. In particular, preventing gas hydrate interparticle agglomeration and/or particle-surface deposition is critical to the prevention of gas hydrate blockages during the exploration and transportation of oil and gas subsea flow lines. These agglomeration and deposition processes are dominated by particle-particle cohesive forces and particle-surface adhesive force. In this study, we present the first direct measurements on the cohesive and adhesive forces studies of the CH4/C2H6 gas hydrate in a liquid hydrocarbon-dominated system utilizing a high-pressure micromechanical force (HP-MMF) apparatus. A CH4/C2H6 gas mixture was used as the gas hydrate former in the model liquid hydrocarbon phase. For the cohesive force baseline test, it was found that the addition of liquid hydrocarbon changed the interfacial tension and contact angle of water in the liquid hydrocarbon compared to water in the gas phase, resulting in a force of 23.5 ± 2.5 mN m-1 at 3.45 MPa and 274 K for a 2 h annealing time period in which hydrate shell growth occurs. It was observed that the cohesive force was inversely proportional to the annealing time, whereas the force increased with increasing contact time. For a longer contact time (>12 h), the force could not be measured because the two hydrate particles adhered permanently to form one large particle. The particle-surface adhesive force in the model liquid hydrocarbon was measured to be 5.3 ± 1.1 mN m-1 under the same experimental condition. Finally, with a 1 h contact time, the hydrate particle and the carbon steel (CS) surface were sintered together and the force was higher than what could be measured by the current apparatus. A possible mechanism is presented in this article to describe the effect of contact time on the particle-particle cohesive force based on the capillary liquid bridge model. A model adapted from the capillary liquid bridge equation has been used to predict the particle-particle cohesive force as a function of contact time, showing close agreement with the experimental data. By comparing the cohesive forces results from gas hydrates for both gas and liquid bulk phases, the surface free energy of a hydrate particle was calculated and found to dominate the changes in the interaction forces with different continuous bulk phases.

10.
Phys Chem Chem Phys ; 19(20): 13307-13315, 2017 May 24.
Article in English | MEDLINE | ID: mdl-28492646

ABSTRACT

In order to investigate the mechanism of gas hydrate deposition and agglomeration in gas dominated flowlines, a high-pressure micromechanical force (MMF) apparatus was applied to directly measure CH4/C2H6 hydrate adhesion/cohesion forces under low temperature and high pressure conditions. A CH4/C2H6 gas mixture was used as the hydrate former. Adhesion forces between hydrate particles and carbon steel (CS) surfaces were measured, and the effects of corrosion on adhesion forces were analyzed. The influences of NaCl concentration on the cohesion force between CH4/C2H6 hydrate particles were also studied for gas-dominated systems. It was observed that there was no measurable adhesion force for pristine (no corrosion) and corroded surfaces, when there was no condensed water or water droplet on these surfaces. With water on the surface (the estimated water amount was around 1.7 µg mm-2), a hydrate film growth process was observed during the measurement. CS samples were soaked in NaCl solution to obtain different extents of corrosion on surfaces, and adhesion measurements were performed on both pristine and corroded samples. The adhesion force was found to increase with increasing soak times in 5 wt% NaCl (resulting in more visual corrosion) by up to 500%. For the effect of salinity on cohesion forces, it was found that the presence of NaCl decreased the cohesion force between hydrate particles, and a possible explanation of this phenomenon was given based on the capillary liquid bridge model.

SELECTION OF CITATIONS
SEARCH DETAIL
...