Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Plant J ; 118(6): 1774-1792, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38468425

ABSTRACT

Saline-alkali stress is an important abiotic stress factor affecting tomato (Solanum lycopersicum L.) plant growth. Although the involvement of the tomato SlWRKY gene family in responses to saline-alkali stress has been well established, the mechanism underlying resistance to saline-alkali stress remains unclear. In this study, we investigated the role of SlWRKY81 in conferring saline-alkali stress resistance by using overexpression and knockout tomato seedlings obtained via genetic modification. We demonstrated that SlWRKY81 improves the ability of tomato to withstand saline-alkali stress by enhancing antioxidant capacity, root activity, and proline content while reducing malondialdehyde levels. Saline-alkali stress induces an increase in jasmonic acid (JA) content in tomato seedlings, and the SlWRKY81 promoter responds to JA signaling, leading to an increase in SlWRKY81 expression. Furthermore, the interaction between SlJAZ1 and SlWRKY81 represses the expression of SlWRKY81. SlWRKY81 binds to W-box motifs in the promoter regions of SlSPDS2 and SlNHX4, thereby positively regulating their expression. This regulation results in increased spermidine (Spd) content and enhanced potassium (K+) absorption and sodium (Na+) efflux, which contribute to the resistance of tomato to saline-alkali stress. However, JA and SlJAZ1 exhibit antagonistic effects. Elevated JA content reduces the inhibitory effect of SlJAZ1 on SlWRKY81, leading to the release of additional SlWRKY81 protein and further augmenting the resistance of tomato to saline-alkali stress. In summary, the modulation of Spd synthesis and Na+/K+ homeostasis mediated by the interaction between SlWRKY81 and SlJAZ1 represents a novel pathway underlying tomato response to saline-alkali stress.


Subject(s)
Cyclopentanes , Gene Expression Regulation, Plant , Homeostasis , Oxylipins , Plant Proteins , Potassium , Sodium , Solanum lycopersicum , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Oxylipins/metabolism , Cyclopentanes/metabolism , Potassium/metabolism , Sodium/metabolism , Spermidine/metabolism , Alkalies/metabolism , Seedlings/genetics , Seedlings/metabolism , Seedlings/physiology , Signal Transduction
2.
Plant Physiol Biochem ; 208: 108477, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38442626

ABSTRACT

Tomato fruit consumption is influenced by flavor and nutrient quality. In the present study, we investigate the impact of water saving irrigation (WSI) as a pre-harvest management on flavor and nutrient quality of tomato fruit. Our results demonstrate that WSI-treated tomato fruit exhibited improved sensory scores as assessed by a taste panel, accompanied by elevated levels of SlGLK2 expression, sugars, acids, and carotenoid contents compared to non-treated fruit. Notably, WSI treatment significantly enhanced the development of chloroplast and plastoglobulus in chromoplast, which served as carotenoid storage sites and upregulated the expression of carotenoid biosynthetic genes. Furthermore, integrated transcriptome and metabolome analysis revealed heightened expression of sugar and flavonoid metabolism pathways in WSI-treated tomato fruit. Remarkably, the master regulator SlMYB12 displayed a substantially increased expression due to WSI. These findings suggest that WSI is an effective and sustainable approach to enhance the pigments metabolism and storage capacity as well as the organoleptic characteristics and nutritional value of tomato fruit, offering a win-win solution for both water conservation and quality improvement in agro-food production.


Subject(s)
Solanum lycopersicum , Solanum lycopersicum/genetics , Fruit/metabolism , Water/metabolism , Transcriptome , Carotenoids/metabolism
3.
Int J Mol Sci ; 24(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38069320

ABSTRACT

DC1 (Divergent C1) domain proteins are a new class of proteins that have been discovered in recent years, which play an important role in plant growth, development, and stress response. In order to better study the distribution and function of DC1 domain proteins in tomatoes, a genome-wide identification was conducted. It was found that there are twenty-one DC1 domain protein genes distributed on nine chromosomes of tomatoes, named SlCHP1-21. Phylogenetic analysis shows that twenty-one SlCHP genes are divided into six subfamilies. Most of the SlCHP genes in tomatoes have no or very short introns. All SlCHP proteins, with the exception of SlCHP8 and SlCHP17, contain variable amounts of C1 domain. Analysis of the SlCHP gene promoter sequence revealed multiple cis-elements responsive to plant stress. qRT-CR analysis showed that most members of SlCHP gene expressed in the roots. The SlCHP11, 13, 16, 17, and SlCHP20 genes showed specific responses to high temperature, low temperature, salt, and drought stress. In addition, the subcellular localization and interaction proteins of SlCHP were analyzed and predicted. Together, these results provides a theoretical basis for further exploration of the function and mechanism of the SlCHP gene in tomatoes.


Subject(s)
Solanum lycopersicum , Solanum lycopersicum/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Stress, Physiological/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Multigene Family
4.
J Integr Plant Biol ; 65(7): 1794-1813, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37009849

ABSTRACT

The plant hormone ethylene is essential for climacteric fruit ripening, although it is unclear how other phytohormones and their interactions with ethylene might affect fruit ripening. Here, we explored how brassinosteroids (BRs) regulate fruit ripening in tomato (Solanum lycopersicum) and how they interact with ethylene. Exogenous BR treatment and increased endogenous BR contents in tomato plants overexpressing the BR biosynthetic gene SlCYP90B3 promoted ethylene production and fruit ripening. Genetic analysis indicated that the BR signaling regulators Brassinazole-resistant1 (SlBZR1) and BRI1-EMS-suppressor1 (SlBES1) act redundantly in fruit softening. Knocking out SlBZR1 inhibited ripening through transcriptome reprogramming at the onset of ripening. Combined transcriptome deep sequencing and chromatin immunoprecipitation followed by sequencing identified 73 SlBZR1-repressed targets and 203 SlBZR1-induced targets involving major ripening-related genes, suggesting that SlBZR1 positively regulates tomato fruit ripening. SlBZR1 directly targeted several ethylene and carotenoid biosynthetic genes to contribute to the ethylene burst and carotenoid accumulation to ensure normal ripening and quality formation. Furthermore, knock-out of Brassinosteroid-insensitive2 (SlBIN2), a negative regulator of BR signaling upstream of SlBZR1, promoted fruit ripening and carotenoid accumulation. Taken together, our results highlight the role of SlBZR1 as a master regulator of tomato fruit ripening with potential for tomato quality improvement and carotenoid biofortification.


Subject(s)
Brassinosteroids , Solanum lycopersicum , Solanum lycopersicum/genetics , Fruit/metabolism , Ethylenes , Plant Growth Regulators , Carotenoids , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
5.
Antioxidants (Basel) ; 11(1)2022 Jan 05.
Article in English | MEDLINE | ID: mdl-35052619

ABSTRACT

Tomato is susceptible to chilling injury during cold storage. In this study, we found that low temperature promoted the expression of brassinosteroid (BR) biosynthetic genes in tomato fruits. The overexpression of SlCYP90B3 (SlCYP90B3-OE), a key BR biosynthetic gene, alleviated the chilling injury with decreased electrical conductivity and malondialdehyde. In SlCYP90B3-OE tomato fruits, the activities of antioxidant enzymes, including ascorbate peroxidase (APX), catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD), were markedly increased, while the activity of membranous lipolytic enzymes, lipoxygenase (LOX), and phospholipase D (PLD), were significantly decreased when compared with the wild-type in response to cold storage. Furthermore, the expression level of the cold-response-system component, SlCBF1, was higher in SlCYP90B3-OE fruits than in the wild-type fruits. These results indicated that SlCYP90B3 might be involved in the chilling tolerance of tomato fruits during cold storage, possibly by regulating the antioxidant enzyme system and SlCBF1 expression.

6.
iScience ; 24(8): 102926, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34430815

ABSTRACT

Fruit softening indicated by firmness determines the texture, transportability, and shelf life of tomato products. However, the regulatory mechanism underlying firmness formation in tomato fruit is poorly understood. Here, we report the regulatory role of SlBES1, an essential component of brassinosteroid hormone signaling, in tomato fruit softening. We found that SlBES1 promotes fruit softening during tomato fruit ripening and postharvest storage. RNA-seq analysis suggested that PMEU1, which encodes a pectin methylesterase, might participate in SlBES1-mediated softening. Biochemical and immunofluorescence assays indicated that SlBES1 inhibited PMEU1-related pectin de-methylesterification. Further molecular and genetic evidence verified that SlBES1 directly binds to the E-box of PMEU1 to repress its expression, leading to fruits softening. Loss-of-function SlBES1 mutant generated by CRISPR-Cas9 showed firmer fruits and longer shelf life during postharvest storage without other quality alteration. Collectively, our results indicated the potential of manipulating SlBES1 to regulate firmness without negative consequence on visual and nutrition quality.

7.
Environ Sci Process Impacts ; 23(7): 1040-1049, 2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34152344

ABSTRACT

Zinc oxide nanoparticles (ZnO NPs) are widely used to manufacture textile fibers, synthetic rubber, and paint. However, crop yields and quality are threatened by the increased use of metallic NPs in industry, which has resulted in their accumulation in agricultural land. Many studies have shown that plants defend against biotic and abiotic stresses through the activities of metabolites and hormones. However, whether glucosinolates (GSs) are involved in plant responses to ZnO NP-related stress remains unknown. In this study, wild-type (WT) and GS mutant (myb28/29 and cyp79B2/B3) Arabidopsis plants were subjected to ZnO NP stress to address this question. Our results showed that exposure to ZnO NPs promoted GS accumulation and induced the relative messenger RNA (mRNA) expression levels of GS biosynthesis-related genes. Moreover, ZnO NP treatment adversely affected root length, the number of lateral roots, chlorophyll contents, and plant biomass. Importantly, our results showed that root growth, chlorophyll contents, and plant biomass were all decreased in the GS mutants compared with those in WT plants. Overall, our results showed that WT plants tolerated ZnO NP-induced stress more efficiently than the GS mutants, suggesting that GSs are involved in plant resistance to ZnO NP-induced toxicity.


Subject(s)
Arabidopsis , Nanoparticles , Zinc Oxide , Arabidopsis/genetics , Glucosinolates/toxicity , Plant Roots , Zinc Oxide/toxicity
8.
Hortic Res ; 7: 163, 2020.
Article in English | MEDLINE | ID: mdl-33082970

ABSTRACT

The essential role of ethylene in fruit ripening has been thoroughly studied. However, the involvement of brassinosteroids (BRs) in the regulation of fruit ripening and their relationship with the ethylene pathway are poorly understood. In the current study, we found that BRs were actively synthesized during tomato fruit ripening. We then generated transgenic lines overexpressing or silencing SlCYP90B3, which encodes a cytochrome P450 monooxygenase that catalyzes the rate-limiting step of BR synthesis. The expression level of SlCYP90B3 was positively related to the contents of bioactive BRs as well as the ripening process in tomato fruit, including enhanced softening and increased soluble sugar and flavor volatile contents. Both carotenoid accumulation and ethylene production were strongly correlated with the expression level of SlCYP90B3, corroborated by the altered expression of carotenoid biosynthetic genes as well as ethylene pathway genes in transgenic tomato fruits. However, the application of the ethylene perception inhibitor 1-methycyclopropene (1-MCP) abolished the promotion effect of SlCYP90B3 overexpression on carotenoid accumulation. Taken together, these results increase our understanding of the involvement of SlCYP90B3 in bioactive BR biosynthesis as well as fruit ripening in tomato, thus making SlCYP90B3 a target gene for improvement of visual, nutritional and flavor qualities of tomato fruits with no yield penalty.

9.
Plant Biotechnol J ; 18(1): 141-154, 2020 01.
Article in English | MEDLINE | ID: mdl-31161714

ABSTRACT

Fumonisin B1 (FB1) and Alternaria alternate f. sp. lycopersici (AAL)-toxin are classified as sphinganine analog mycotoxins (SAMTs), which induce programmed cell death (PCD) in plants and pose health threat to humans who consume the contaminated crop products. Herein, Fumonisin B1 Resistant41 (FBR41), a dominant mutant allele, was identified by map-based cloning of Arabidopsis FB1-resistant mutant fbr41, then ectopically expressed in AAL-toxin sensitive tomato (Solanum lycopersicum) cultivar. FBR41-overexpressing tomato plants exhibited less severe cell death phenotype upon AAL-toxin treatment. Analysis of free sphingoid bases showed that both fbr41 and FBR41-overexpressing tomato plants accumulated less sphinganine and phytosphingosine upon FB1 and AAL-toxin treatment, respectively. Alternaria stem canker is a disease caused by AAL and responsible for severe economic losses in tomato production, and FBR41-overexpressing tomato plants exhibited enhanced resistance to AAL with decreased fungal biomass and less cell death, which was accompanied by attenuated accumulation of free sphingoid bases and jasmonate (JA). Taken together, our results indicate that FBR41 is potential in inhibiting SAMT-induced PCD and controlling Alternaria stem canker in tomato.


Subject(s)
Alternaria/pathogenicity , Disease Resistance/genetics , Genes, Plant , Mycotoxins , Plant Diseases/genetics , Solanum lycopersicum , Cell Death , Fumonisins , Plant Diseases/microbiology
10.
Food Chem ; 298: 125069, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31260991

ABSTRACT

The effects of ethanol treatment on quality characteristics of cherry tomatoes were investigated over 11 days of storage at room temperature (25 °C). Results showed that sensory quality was improved after ethanol treatment, with redder, softer fruits at the edible stage (11 days) compared with control fruit. In addition, the contents of ascorbic acid, sucrose and fructose were elevated after ethanol treatment as well as the concentration of 6-methyl-5-hepten-2-one. Conversely, decreased levels of methyl salicylate (MeSA), guaiacol, (Z)-3-hexenal and (E)-2-hexenal were observed. Selected consumers showed a preference for ethanol-treated cherry tomato fruits compared with controls. Taken together, 0.1% ethanol application has the potential to improve the quality characteristics of cherry tomatoes stored at room temperature.


Subject(s)
Ethanol/pharmacology , Solanum lycopersicum/drug effects , Aldehydes/chemistry , Ascorbic Acid/analysis , Chromatography, High Pressure Liquid , Discriminant Analysis , Flavoring Agents/analysis , Fruit/chemistry , Fruit/drug effects , Fruit/metabolism , Humans , Least-Squares Analysis , Solanum lycopersicum/chemistry , Solanum lycopersicum/metabolism , Salicylates/chemistry , Sugars/analysis , Temperature , Volatile Organic Compounds/analysis , Volatile Organic Compounds/isolation & purification
11.
Food Chem ; 263: 194-200, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-29784307

ABSTRACT

Effects of postharvest methyl jasmonate (MeJA) treatment on the contents of ascorbic acid and carotenoids, as well as the compositions and contents of volatile organic compounds (VOCs) in cherry tomato fruits were investigated during 11 days of storage at room temperature (25 °C). The results showed that MeJA treatment significantly increased the contents of ascorbic acid and carotenoids, especially lycopene in postharvest cherry tomato fruits. Moreover, MeJA treatment improved the contents of carotenoids derived VOCs such as 6-methyl-5-hepten-2-one (MHO), while had no effect on firmness, sugars and titratable acidity. All above results suggested that the exogenous MeJA application is potential in enhancement of main health-promoting components and VOCs in postharvest cherry tomato fruits.


Subject(s)
Acetates/pharmacology , Cyclopentanes/pharmacology , Food Storage/methods , Oxylipins/pharmacology , Solanum lycopersicum/chemistry , Solanum lycopersicum/drug effects , Volatile Organic Compounds/analysis , Ascorbic Acid/analysis , Carotenoids/analysis , Food Quality , Fruit/drug effects , Ketones/analysis , Lycopene/analysis
12.
Sci Rep ; 6: 28451, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27324416

ABSTRACT

Alternaria alternata f.sp. Lycopersici (AAL) toxin induces programmed cell death (PCD) in susceptible tomato (Solanum lycopersicum) leaves. Jasmonate (JA) promotes AAL toxin induced PCD in a COI1 (coronatine insensitive 1, JA receptor)-dependent manner by enhancement of reactive oxygen species (ROS) production. To further elucidate the underlying mechanisms of this process, we performed a comparative proteomic analysis using tomato jasmonic acid insensitive1 ( jai1), the receptor mutant of JA, and its wild type (WT) after AAL toxin treatment with or without JA treatment. A total of 10367 proteins were identified in tomato leaves using isobaric tags for relative and absolute quantitation (iTRAQ) quantitative proteomics approach. 2670 proteins were determined to be differentially expressed in response to AAL toxin and JA. Comparison between AAL toxin treated jai1 and its WT revealed the COI1-dependent JA pathway regulated proteins, including pathways related to redox response, ceramide synthesis, JA, ethylene (ET), salicylic acid (SA) and abscisic acid (ABA) signaling. Autophagy, PCD and DNA damage related proteins were also identified. Our data suggest that COI1-dependent JA pathway enhances AAL toxin induced PCD through regulating the redox status of the leaves, other phytohormone pathways and/or important PCD components.


Subject(s)
Autophagy/drug effects , Cyclopentanes/toxicity , Metabolic Networks and Pathways/drug effects , Oxylipins/toxicity , Plant Proteins/metabolism , Solanum lycopersicum/drug effects , Sphingosine/toxicity , Cyclopentanes/metabolism , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Mutagenesis , Oxylipins/metabolism , Plant Growth Regulators/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Proteins/genetics , Plants, Genetically Modified/drug effects , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/metabolism , Proteomics , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...