Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 357: 180-186, 2018 09 05.
Article in English | MEDLINE | ID: mdl-29886363

ABSTRACT

This study evaluated the methanogens responsible for methanogenic degradation of tetramethylammonium hydroxide (TMAH) in a continuous flow bioreactor. The enriched methanogens attained an estimated maximum specific TMAH degradation rate and half-saturation constant of 39.5 mg TMAH/gVSS/h and 820 mg/L, following the Monod-type kinetic expression for methanogenic TMAH degradation. Presence of sulfide more than 20 mg/L significantly extended lag period and slowed down specific TMAH degradation rates. The results of terminal restriction fragment length polymorphism (T-RFLP), cloning/sequencing, and quantitative real-time PCR analyses targeting on the methyl coenzyme M reductase alpha subunit (mcrA) genes retrieved from the bioreactor and batch experiments indicated that Methanomethylovorans species were the dominant methanogens responsible for methanogenic degradation of TMAH. The isolated TMAH-degrading methanogen from the bioreactor, however, was identified closely related to Methanosarcina mazei. It is likely that a very low TMAH environment in the bioreactor favored the growth of Methanomethylovorans hollandica, while the much higher TMAH in the isolation growth medium proliferated Methanosarcina mazei.


Subject(s)
Bioreactors/microbiology , Methane/metabolism , Methanosarcinaceae/metabolism , Quaternary Ammonium Compounds/metabolism , Bacterial Proteins/genetics , Biodegradation, Environmental , Methanosarcinaceae/genetics , Oxidoreductases/genetics
2.
Appl Microbiol Biotechnol ; 99(3): 1485-97, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25261128

ABSTRACT

This study investigated methanogenic communities involved in degradation of tetramethylammonium hydroxide (TMAH) in three full-scale bioreactors treating TMAH-containing wastewater. Based on the results of terminal-restriction fragment-length polymorphism (T-RFLP) and quantitative PCR analyses targeting the methyl-coenzyme M reductase alpha subunit (mcrA) genes retrieved from three bioreactors, Methanomethylovorans and Methanosarcina were the dominant methanogens involved in the methanogenic degradation of TMAH in the bioreactors. Furthermore, batch experiments were conducted to evaluate mcrA messenger RNA (mRNA) expression during methanogenic TMAH degradation, and the results indicated that a higher level of TMAH favored mcrA mRNA expression by Methansarcina, while Methanomethylovorans could only express considerable amount of mcrA mRNA at a lower level of TMAH. These results suggest that Methansarcina is responsible for methanogenic TMAH degradation at higher TMAH concentrations, while Methanomethylovorans may be important at a lower TMAH condition.


Subject(s)
Bacteria/metabolism , Bioreactors/microbiology , Methane/metabolism , Quaternary Ammonium Compounds/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Polymorphism, Restriction Fragment Length , Sewage/microbiology
3.
Bioresour Technol ; 113: 303-10, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22456234

ABSTRACT

This study evaluated biological treatment of TMAH in a full-scale methanogenic up-flow anaerobic sludge blanket (UASB) followed by an aerobic bioreactor. In general, the UASB was able to perform a satisfactory TMAH degradation efficiency, but the effluent COD of the aerobic bioreactor seemed to increase with an increased TMAH in the influent wastewater. The batch test results confirmed that the UASB sludge under methanogenic conditions would be favored over the aerobic ones for TMAH treatment due to its superb ability of handling high strength of TMAH-containing wastewaters. Based on batch experiments, inhibitory chemicals present in TFT-LCD wastewater like surfactants and sulfate should be avoided to secure a stable methanogenic TMAH degradation. Finally, molecular monitoring of Methanomethylovorans hollandica and Methanosarcina mazei in the full-scale plant, the dominant methanogens in the UASB responsible for TMAH degradation, may be beneficial for a stable TMAH treatment performance.


Subject(s)
Hydroxides/metabolism , Water Pollutants, Chemical/isolation & purification , Ammonium Hydroxide , Base Sequence , DNA Primers , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length
SELECTION OF CITATIONS
SEARCH DETAIL
...