Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
EBioMedicine ; 90: 104500, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36893587

ABSTRACT

BACKGROUND: Despite the advent of improved therapeutic options for advanced prostate cancer, the durability of clinical benefits is limited due to inevitable development of resistance. By constitutively sustaining androgen receptor (AR) signaling, expression of ligand-binding domain truncated AR variants (AR-V(ΔLBD)) accounts for the major mechanism underlying the resistance to anti-androgen drugs. Strategies to target AR and its LBD truncated variants are needed to prevent the emergence or overcome drug resistance. METHODS: We utilize Proteolysis Targeting Chimeras (PROTAC) technology to achieve induced degradation of both full-length AR (AR-FL) and AR-V(ΔLBD) proteins. In the ITRI-PROTAC design, an AR N-terminal domain (NTD) binding moiety is appended to von-Hippel-Lindau (VHL) or Cereblon (CRBN) E3 ligase binding ligand with linker. FINDINGS: In vitro studies demonstrate that ITRI-PROTAC compounds mechanistically degrade AR-FL and AR-V(ΔLBD) proteins via ubiquitin-proteasome system, leading to impaired AR transactivation on target gene expression, and inhibited cell proliferation accompanied by apoptosis activation. The compounds also significantly inhibit enzalutamide-resistant growth of castration resistant prostate cancer (CRPC) cells. In castration-, enzalutamide-resistant CWR22Rv1 xenograft model without hormone ablation, ITRI-90 displays a pharmacokinetic profile with decent oral bioavailability and strong antitumor efficacy. INTERPRETATION: AR NTD that governs the transcriptional activities of all active variants has been considered attractive therapeutic target to block AR signaling in prostate cancer cells. We demonstrated that utilizing PROTAC for induced AR protein degradation via NTD represents an efficient alternative therapeutic strategy for CRPC to overcome anti-androgen resistance. FUNDING: The funding detail can be found in the Acknowledgements section.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Male , Humans , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Proteolysis Targeting Chimera , Ligands , Nitriles/therapeutic use , Cell Line, Tumor , Proteolysis
2.
J Pharm Sci ; 107(11): 2755-2763, 2018 11.
Article in English | MEDLINE | ID: mdl-30005986

ABSTRACT

Treating thrombocytopenia induced by chemotherapy remains an unmet-medical need. The use of recombinant human interleukin-11 (rhIL-11) requires repeated injections and induces significant fluid retention in some patients. Modification of human interleukin-11 with chemically inert polyethylene glycol polymer (PEG) may extend the peripheral circulation half-life leading to an improved pharmacokinetic and pharmadynamic profile. In this study, a number of rhIL-11 PEG conjugates were created to determine the optimal approach to prolong circulating half-life with the most robust pharmacological effect. The lead candidate was found to be a single 40-kDa Y-shaped PEG linked to the N-terminus, which produced a long-lasting circulating half-life, enhanced efficacy and alleviated side effect of dilutional anemia in healthy rat models. This candidate was also shown to be effective in myelosuppressive rats in preventing the occurrence of severe thrombocytopenia while ameliorating dilutional anemia, compared to rats receiving daily administration of unmodified rhIL-11 at the same dose. These data indicated that a single injection of the selected modified rhIL-11 for each cycle of chemotherapy regimen is potentially feasible. This approach may also be useful in treating patients of acute radiation syndrome when frequent administration is not feasible in a widespread event of a major radiation exposure.


Subject(s)
Interleukin-11/pharmacology , Interleukin-11/pharmacokinetics , Polyethylene Glycols/pharmacology , Polyethylene Glycols/pharmacokinetics , Animals , Blood Platelets/drug effects , Humans , Interleukin-11/chemistry , Male , Models, Molecular , Platelet Count , Polyethylene Glycols/chemistry , Rats, Sprague-Dawley , Recombinant Proteins/chemistry , Recombinant Proteins/pharmacokinetics , Recombinant Proteins/pharmacology , Thrombocytopenia/drug therapy , Thrombopoiesis/drug effects
3.
Bioorg Med Chem Lett ; 20(20): 6129-32, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20833039

ABSTRACT

A series of azulene-based derivatives were synthesized as potent inhibitors for receptor tyrosine kinases such as FMS-like tyrosine kinase 3 (FLT-3). Systematic side chain modification of prototype 1a was carried out through SAR studies. Analogue 22 was identified from this series and found to be one of the most potent FLT-3 inhibitors, with good pharmaceutical properties, superior efficacy, and tolerability in a tumor xenograft model.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Azulenes/chemistry , Azulenes/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Antineoplastic Agents/blood , Antineoplastic Agents/pharmacology , Azulenes/blood , Azulenes/pharmacology , Cell Line, Tumor , Cell Proliferation , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Rats , Receptor Protein-Tyrosine Kinases/metabolism , fms-Like Tyrosine Kinase 3/antagonists & inhibitors
4.
Bioorg Med Chem ; 18(13): 4674-86, 2010 Jul 01.
Article in English | MEDLINE | ID: mdl-20570526

ABSTRACT

A series of new ureidoindolin-2-one derivatives were synthesized and evaluated as inhibitors of receptor tyrosine kinases. Investigation of structure-activity relationships at positions 5, 6, and 7 of the oxindole skeleton led to the identification of 6-ureido-substituted 3-pyrrolemethylidene-2-oxindole derivatives that potently inhibited both the vascular endothelial growth factor receptor (VEGFR) and platelet-derived growth factor receptor (PDGFR) families of receptor tyrosine kinases. Several derivatives showed potency against the PDGFR inhibiting both its enzymatic and cellular functions in the single-digit nanomolar range. Among them, compound 35 was a potent inhibitor against tyrosine kinases, including VEGFR and PDGFR families, as well as Aurora kinases. Inhibitor 36 (non-substituted on the pyrrole or phenyl ring) had a moderate pharmacokinetic profile and completely inhibited tumor growth initiated with the myeloid leukemia cell line, MV4-11, in a subcutaneous xenograft model in BALB/c nude mice.


Subject(s)
ErbB Receptors/antagonists & inhibitors , Indoles/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrroles/chemistry , Receptors, Platelet-Derived Growth Factor/antagonists & inhibitors , Urea/analogs & derivatives , Animals , Aurora Kinases , Binding Sites , Cell Line, Tumor , Computer Simulation , Drug Screening Assays, Antitumor , ErbB Receptors/metabolism , Humans , Indoles/therapeutic use , Indoles/toxicity , Leukemia, Myeloid/drug therapy , Mice , Oxindoles , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/toxicity , Protein Serine-Threonine Kinases/metabolism , Pyrroles/therapeutic use , Pyrroles/toxicity , Receptors, Platelet-Derived Growth Factor/metabolism , Structure-Activity Relationship , Transplantation, Heterologous , Urea/chemistry , Urea/therapeutic use , Urea/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...