Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Animal Model Exp Med ; 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38372410

ABSTRACT

BACKGROUND: Calcific aortic valve stenosis (CAVS) is one of the most challenging heart diseases in clinical with rapidly increasing prevalence. However, study of the mechanism and treatment of CAVS is hampered by the lack of suitable, robust and efficient models that develop hemodynamically significant stenosis and typical calcium deposition. Here, we aim to establish a mouse model to mimic the development and features of CAVS. METHODS: The model was established via aortic valve wire injury (AVWI) combined with vitamin D subcutaneous injected in wild type C57/BL6 mice. Serial transthoracic echocardiography was applied to evaluate aortic jet peak velocity and mean gradient. Histopathological specimens were collected and examined in respect of valve thickening, calcium deposition, collagen accumulation, osteogenic differentiation and inflammation. RESULTS: Serial transthoracic echocardiography revealed that aortic jet peak velocity and mean gradient increased from 7 days post model establishment in a time dependent manner and tended to be stable at 28 days. Compared with the sham group, simple AVWI or the vitamin D group, the hybrid model group showed typical pathological features of CAVS, including hemodynamic alterations, increased aortic valve thickening, calcium deposition, collagen accumulation at 28 days. In addition, osteogenic differentiation, fibrosis and inflammation, which play critical roles in the development of CAVS, were observed in the hybrid model. CONCLUSIONS: We established a novel mouse model of CAVS that could be induced efficiently, robustly and economically, and without genetic intervention. It provides a fast track to explore the underlying mechanisms of CAVS and to identify more effective pharmacological targets.

2.
Nat Commun ; 15(1): 557, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38228638

ABSTRACT

Calcific aortic valve disease is a prevalent cardiovascular disease with no available drugs capable of effectively preventing its progression. Hence, an efficient drug delivery system could serve as a valuable tool in drug screening and potentially enhance therapeutic efficacy. However, due to the rapid blood flow rate associated with aortic valve stenosis and the lack of specific markers, achieving targeted drug delivery for calcific aortic valve disease has proved to be challenging. Here we find that protease-activated-receptor 2 (PAR2) expression is up-regulated on the plasma membrane of osteogenically differentiated valvular interstitial cells. Accordingly, we develop a magnetic nanocarrier functionalized with PAR2-targeting hexapeptide for dual-active targeting drug delivery. We show that the nanocarriers effectively deliver XCT790-an anti-calcification drug-to the calcified aortic valve under extra magnetic field navigation. We demonstrate that the nano-cargoes consequently inhibit the osteogenic differentiation of valvular interstitial cells, and alleviate aortic valve calcification and stenosis in a high-fat diet-fed low-density lipoprotein receptor-deficient (Ldlr-/-) mouse model. This work combining PAR2- and magnetic-targeting presents an effective targeted drug delivery system for treating calcific aortic valve disease in a murine model, promising future clinical translation.


Subject(s)
Aortic Valve Stenosis , Calcinosis , Mice , Animals , Aortic Valve/metabolism , Aortic Valve Stenosis/drug therapy , Osteogenesis , Calcinosis/drug therapy , Calcinosis/metabolism , Cells, Cultured , Magnetic Phenomena
3.
Circulation ; 149(8): 605-626, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38018454

ABSTRACT

BACKGROUND: A better understanding of the molecular mechanism of aortic valve development and bicuspid aortic valve (BAV) formation would significantly improve and optimize the therapeutic strategy for BAV treatment. Over the past decade, the genes involved in aortic valve development and BAV formation have been increasingly recognized. On the other hand, ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) gene family members have been reported to be able to modulate cardiovascular development and diseases. The present study aimed to further investigate the roles of ADAMTS family members in aortic valve development and BAV formation. METHODS: Morpholino-based ADAMTS family gene-targeted screening for zebrafish heart outflow tract phenotypes combined with DNA sequencing in a 304 cohort BAV patient registry study was initially carried out to identify potentially related genes. Both ADAMTS gene-specific fluorescence in situ hybridization assay and genetic tracing experiments were performed to evaluate the expression pattern in the aortic valve. Accordingly, related genetic mouse models (both knockout and knockin) were generated using the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9) method to further study the roles of ADAMTS family genes. The lineage-tracing technique was used again to evaluate how the cellular activity of specific progenitor cells was regulated by ADAMTS genes. Bulk RNA sequencing was used to investigate the signaling pathways involved. Inducible pluripotent stem cells derived from both BAV patients and genetic mouse tissue were used to study the molecular mechanism of ADAMTS. Immunohistochemistry was performed to examine the phenotype of cardiac valve anomalies, especially in the extracellular matrix components. RESULTS: ADAMTS genes targeting and phenotype screening in zebrafish and targeted DNA sequencing on a cohort of patients with BAV identified ADAMTS16 (a disintegrin and metalloproteinase with thrombospondin motifs 16) as a BAV-causing gene and found the ADAMTS16 p. H357Q variant in an inherited BAV family. Both in situ hybridization and genetic tracing studies described a unique spatiotemporal pattern of ADAMTS16 expression during aortic valve development. Adamts16+/- and Adamts16+/H355Q mouse models both exhibited a right coronary cusp-noncoronary cusp fusion-type BAV phenotype, with progressive aortic valve thickening associated with raphe formation (fusion of the commissure). Further, ADAMTS16 deficiency in Tie2 lineage cells recapitulated the BAV phenotype. This was confirmed in lineage-tracing mouse models in which Adamts16 deficiency affected endothelial and second heart field cells, not the neural crest cells. Accordingly, the changes were mainly detected in the noncoronary and right coronary leaflets. Bulk RNA sequencing using inducible pluripotent stem cells-derived endothelial cells and genetic mouse embryonic heart tissue unveiled enhanced FAK (focal adhesion kinase) signaling, which was accompanied by elevated fibronectin levels. Both in vitro inducible pluripotent stem cells-derived endothelial cells culture and ex vivo embryonic outflow tract explant studies validated the altered FAK signaling. CONCLUSIONS: Our present study identified a novel BAV-causing ADAMTS16 p. H357Q variant. ADAMTS16 deficiency led to BAV formation.


Subject(s)
Bicuspid Aortic Valve Disease , Heart Defects, Congenital , Heart Valve Diseases , Humans , Animals , Mice , Zebrafish/genetics , Heart Valve Diseases/metabolism , Endothelial Cells/metabolism , Disintegrins/genetics , Disintegrins/metabolism , In Situ Hybridization, Fluorescence , Aortic Valve/metabolism , Heart Defects, Congenital/complications , Extracellular Matrix/metabolism , Thrombospondins/metabolism , Metalloproteases/metabolism , ADAMTS Proteins/genetics , ADAMTS Proteins/metabolism
4.
Cardiovasc Res ; 119(11): 2117-2129, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37183487

ABSTRACT

AIMS: The incidence of calcific aortic valve disease (CAVD) has risen over the last decade and is expected to continue rising; however, pharmacological approaches have proven ineffective. In this study, we evaluated the role and underlying mechanisms of human antigen R (HuR)-mediated post-transcriptional regulation in CAVD. METHODS AND RESULTS: We found that HuR was significantly upregulated in human calcified aortic valves and primary aortic valvular interstitial cells (VICs) following osteogenic stimulation. Subsequent functional studies revealed that HuR silencing ameliorated calcification both in vitro and in vivo. For the first time, we demonstrated that HuR directly interacted with the transcript of phosphatidylinositol-5-phosphate 4-kinase, type II, alpha (PIP4K2A), which mediates phosphatidylinositol signalling, facilitates autophagy, and acts as an mRNA stabilizer. HuR positively modulated PIP4K2A expression at the post-transcriptional level and consequently influenced the AKT/mTOR/ATG13 pathway to regulate autophagy and CAVD progression. CONCLUSION: Our study provides new insights into the post-transcriptional regulatory role of HuR in modulating autophagy-positive factors to regulate the pathogenesis of CAVD. Our findings highlight the potential of HuR as an innovative therapeutic target in CAVD treatment.


Subject(s)
Antigens , Aortic Valve Stenosis , Calcinosis , RNA Processing, Post-Transcriptional , Animals , Female , Humans , Male , Mice , Antigens/physiology , Antigens/therapeutic use , Aortic Valve/pathology , Aortic Valve Stenosis/genetics , Aortic Valve Stenosis/metabolism , Calcinosis/genetics , Calcinosis/metabolism , Cells, Cultured , Phosphotransferases (Alcohol Group Acceptor)/metabolism , RNA Processing, Post-Transcriptional/physiology , RNA, Messenger/metabolism
5.
J Clin Med ; 12(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36675336

ABSTRACT

Objective: Trimethylamine N-oxide (TMAO), a pathological microbial metabolite, is demonstrated to be related to cardiovascular diseases. This study was (1) to investigate the association between TMAO and aortic stenosis and (2) to determine the prognostic value of TMAO for predicting mortality after transcatheter aortic valve replacement (TAVR). Methods: 299 consecutive patients (77 (72−81) years, 58.2% male, Society of Thoracic Surgeons (STS) score 5.8 (4.9−9.3)) with severe aortic stenosis and 711 patients (59 (52−66) years, 51.9% male) without aortic stenosis were included in this retrospective study. A total of 126 pairs of patients were assembled by Propensity Score Matching. The primary outcome was all-cause mortality using survival analyses stratified by TMAO quartiles. Results: Patients with severe aortic stenosis had higher TMAO levels (3.18 (1.77−6.91) µmol/L vs. 1.78 (1.14−2.68) µmol/L, p < 0.001), and TMAO remained significantly higher after adjusting for baseline characteristics. Higher TMAO level was associated with higher 2-year all-cause mortality (19.2% vs. 9.5%, log-rank p = 0.028) and higher late cumulative mortality (34.2% vs. 19.1%, log-rank p = 0.004). In Cox regression multivariate analysis, higher TMAO level remained an independent predictor (hazard ratio 1.788; 95% CI 1.064−3.005, p = 0.028) of all-cause mortality after adjusting for STS score, N-terminal pro b-type natriuretic peptide, and maximum velocity. Conclusions: The TMAO level was higher in aortic stenosis patients. Elevated TMAO was associated with poor adverse outcome after TAVR.

6.
Stem Cells Int ; 2022: 3705637, 2022.
Article in English | MEDLINE | ID: mdl-36248256

ABSTRACT

Background: The poor survival rates of transplanted mesenchymal stem cells (MSCs) in harsh microenvironments impair the efficacy of MSCs transplantation in myocardial infarction (MI). Extrinsic apoptosis pathways play an important role in the apoptosis of transplanted MSCs, and Fas apoptosis inhibitory molecule (FAIM) is involved in regulation of the extrinsic apoptosis pathway. Thus, we aimed to explore whether FAIM augmentation protects MSCs against stress-induced apoptosis and thereby improves the therapeutic efficacy of MSCs. Methods: We ligated the left anterior descending coronary artery (LAD) in the mouse heart to generate an MI model and then injected FAIM-overexpressing MSCs (MSCsFAIM) into the peri-infarction area in vivo. Moreover, FAIM-overexpressing MSCs were challenged with oxygen, serum, and glucose deprivation (OGD) in vitro, which mimicked the harsh microenvironment that occurs in cardiac infarction. Results: FAIM was markedly downregulated under OGD conditions, and FAIM overexpression protected MSCs against OGD-induced apoptosis. MSCsFAIM transplantation improved cell retention, strengthened angiogenesis, and ameliorated heart function. The antiapoptotic effect of FAIM was mediated by cellular-FLICE inhibitory protein (c-FLIP), and FAIM augmentation improved the protein expression of c-FLIP by reducing ubiquitin-proteasome-dependent c-FLIP degradation. Furthermore, FAIM inhibited the activation of JNK, and treatment with the JNK inhibitor SP600125 abrogated the reduction in c-FLIP protein expression caused by FAIM silencing. Conclusions: Overall, these results indicated that FAIM curbed the JNK-mediated, ubiquitination-proteasome-dependent degradation of c-FLIP, thereby improving the survival of transplanted MSCs and enhancing their efficacy in MI. This study may provide a novel approach to strengthen the therapeutic effect of MSC-based therapy.

7.
JACC Basic Transl Sci ; 7(7): 697-712, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35958694

ABSTRACT

There are currently no pharmacological therapies for calcific aortic valve disease (CAVD). Here, we evaluated the role of protein tyrosine phosphatase 1B (PTP1B) inhibition in CAVD. Up-regulation of PTP1B was critically involved in calcified human aortic valve, and PTP1B inhibition had beneficial effects in preventing fibrocalcific response in valvular interstitial cells and LDLR-/- mice. In addition, we reported a novel function of PTP1B in regulating mitochondrial homeostasis by interacting with the OPA1 isoform transition in valvular interstitial cell osteogenesis. Thus, these findings have identified PTP1B as a potential target for preventing aortic valve calcification in patients with CAVD.

9.
Catheter Cardiovasc Interv ; 99 Suppl 1: 1482-1489, 2022 05.
Article in English | MEDLINE | ID: mdl-35324060

ABSTRACT

OBJECTIVES: We aimed to validate a novel staging system for aortic stenosis (AS) in a Chinese patient cohort undergoing transcatheter aortic valve replacement (TAVR), and to compare this classification system to the traditional Society of Thoracic Surgeons (STS) score for TAVR risk stratification. BACKGROUND: A novel staging system for AS based on the extent of cardiac damage upon echocardiography was recently proposed. METHODS: Patients were prospectively enrolled into the Transcatheter Aortic Valve Replacement Single Center Registry in Chinese Population and analyzed retrospectively following additional exclusion criteria. On the basis of echocardiographic findings of cardiac damage, patients were classified into five stages (0-4). RESULTS: A total of 427 patients were included in the current analysis. Forty-eight deaths occurred during a median follow-up of 730 days following TAVR. The staging system showed a statistically significant association between cardiac damage and all-cause mortality; advanced stages were associated with higher mortality. In a multivariate-adjusted Cox proportional hazards regression model, stage and STS scores served as risk factors for 2-year mortality. Each increment in the staging class was associated with an increased risk of mortality (hazard ratio, 1.275; 95% confidence interval [CI], 1.052-1.545). Receiver operating characteristic (ROC) curves were plotted for stage (area under the curve, 0.644; 95% CI, 0.562-0.725) and STS score (0.661; 0.573-0.749), and with no statistically significant differences between ROC curves (p = 0.920). CONCLUSIONS: We validated a novel staging system as a key risk factor for 2-year mortality in a Chinese TAVR patient cohort. Efficacy for risk stratification was comparable to the STS score.


Subject(s)
Aortic Valve Stenosis , Transcatheter Aortic Valve Replacement , Aortic Valve/diagnostic imaging , Aortic Valve/surgery , Aortic Valve Stenosis/diagnostic imaging , Aortic Valve Stenosis/etiology , Aortic Valve Stenosis/surgery , China , Humans , Registries , Retrospective Studies , Risk Factors , Transcatheter Aortic Valve Replacement/adverse effects , Treatment Outcome
10.
Mol Ther Nucleic Acids ; 27: 412-426, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35036054

ABSTRACT

Mesenchymal stromal cell (MSC) transplantation has been a promising therapeutic strategy for repairing heart tissues post-myocardial infarction (MI). Nevertheless, its therapeutic efficacy remains low, which is mainly ascribed to the low viability of transplanted MSCs. Recently, long noncoding RNAs (lncRNAs) have been reported to participate in diverse physiological and pathological processes, but little is known about their role in MSC survival. Using unbiased transcriptome profiling of hypoxia-preconditioned MSCs (HP-MSCs) and normoxic MSCs (N-MSCs), we identified a lncRNA named lung cancer-associated transcript 1 (LUCAT1) under hypoxia. LUCAT1 knockdown reduced the survival of engrafted MSCs and decreased the MSC-based therapeutic potency, as shown by impaired cardiac function, reduced cardiomyocyte survival, and increased fibrosis post-MI. Conversely, LUCAT1 overexpression had the opposite results. Mechanistically, LUCAT1 bound with and recruited jumonji domain-containing 6 (JMJD6) to the promoter of forkhead box Q1 (FOXQ1), which demethylated FOXQ1 at H4R3me2(s) and H3R2me2(a), thus downregulating Bax expression and upregulating Bcl-2 expression to attenuate MSC apoptosis. Therefore, our findings revealed the protective effects of LUCAT1 on MSC apoptosis and demonstrated that the LUCAT1-mediated JMJD6-FOXQ1 pathway might represent a novel target to potentiate the therapeutic effect of MSC-based therapy for ischemic cardiovascular diseases.

11.
Adv Sci (Weinh) ; 8(18): e2004629, 2021 09.
Article in English | MEDLINE | ID: mdl-34319658

ABSTRACT

Angiogenesis is essential for vascular development. The roles of regulatory long noncoding RNAs (lncRNAs) in mediating angiogenesis remain under-explored. Human embryonic stem cell-derived mesenchymal stem cells (hES-MSCs) are shown to exert more potent cardioprotective effects against cardiac ischemia than human bone marrow-derived MSCs (hBM-MSCs), associated with enhanced neovascularization. The purpose of this study is to search for angiogenic lncRNAs enriched in hES-MSCs, and investigate their roles and mechanisms. AC103746.1 is one of the most highly expressed intergenic lncRNAs detected in hES-MSCs versus hBM-MSCs, and named as SCDAL (stem cell-derived angiogenic lncRNA). SCDAL knockdown significantly reduce the angiogenic potential and reparative effects of hES-MSCs in the infarcted hearts, while overexpression of SCDAL in either hES-MSCs or hBM-MSCs exhibits augmented angiogenesis and cardiac function recovery. Mechanistically, SCDAL induces growth differentiation factor 6 (GDF6) expression via direct interaction with SNF5 at GDF6 promoter. Secreted GDF6 promotes endothelial angiogenesis via non-canonical vascular endothelial growth factor receptor 2 activation. Furthermore, SCDAL-GDF6 is expressed in human endothelial cells, and directly enhances endothelial angiogenesis in vitro and in vivo. Thus, these findings uncover a previously unknown lncRNA-dependent regulatory circuit for angiogenesis. Targeted intervention of the SCDAL-GDF6 pathway has potential as a therapy for ischemic heart diseases.


Subject(s)
Growth Differentiation Factor 6/genetics , Growth Differentiation Factor 6/metabolism , Neovascularization, Pathologic/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , SMARCB1 Protein/genetics , SMARCB1 Protein/metabolism , Adult , Female , Gene Expression/genetics , Humans , Male , Middle Aged , Neovascularization, Pathologic/metabolism , Signal Transduction/genetics
12.
Adv Sci (Weinh) ; 8(3): 2003348, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33552872

ABSTRACT

Stem cell-based therapy has great potential in regenerative medicine. However, the survival and engraftment rates of transplanted stem cells in disease regions are poor and limit the effectiveness of cell therapy due to the fragility of stem cells. Here, an approach involving a single-cell coating of surface-anchored nanogel to regulate stem cell fate with anti-apoptosis capacity in the hypoxic and ischemic environment of infarcted hearts is developed for the first time. A polysialic acid-based system is used to anchor microbial transglutaminase to the external surface of the cell membrane, where it catalyzes the crosslinking of gelatin. The single-cell coating with surface-anchored nanogel endows mesenchymal stem cells (MSCs) with stress resistance by blocking the activity of apoptotic cytokines including the binding of tumor necrosis factor α (TNFα) to tumor necrosis factor receptor, which in turn maintains mitochondrial integrity, function and protects MSCs from TNFα-induces apoptosis. The administration of surface engineered MSCs to hearts results in significant improvements in engraftment, cardiac function, infarct size, and vascularity compared with using uncoated MSCs in treating myocardial infarction. The surface-anchored, biocompatible cell surface engineering with nanogel armor provides a new way to produce robust therapeutic stem cells and may explore immense potentials in cell-based therapy.

13.
Stem Cells Dev ; 30(7): 386-398, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33567991

ABSTRACT

Declined function of aged mesenchymal stem cells (MSCs) diminishes the benefits of cell therapy for myocardial infarction (MI). Our previous study has demonstrated that SRT1720, a specific SIRT1 activator, could protect aged human MSCs (hMSCs) against apoptosis. The purpose of the present study was to investigate the role of mitochondria in the antiapoptotic effects of SRT1720. In addition, we established a nonhuman primate MI model to evaluate cell engraftment of SRT1720-pretreated aged hMSCs (SRT1720-OMSCs). A hydrogen peroxide (H2O2)-induced apoptosis model was established in vitro to mimic MI microenvironment. Compared with vehicle-treated aged hMSCs (Vehicle-OMSCs), SRT1720-OMSCs showed alleviated apoptosis level, significantly decreased caspase-3 and caspase-9 activation, and reduced release of cytochrome c when subjected to H2O2 treatment. Mitochondrial contents were compared between young and aged hMSCs and our data showed that aged hMSCs had lower mitochondrial DNA (mtDNA) copy numbers and protein expression levels of components of the mitochondrial electron transport chain (ETC) than young hMSCs. Also, treatment with SRT1720 resulted in enhanced MitoTracker staining, increased mtDNA levels and expression of mitochondrial ETC components in aged hMSCs. Furthermore, SRT1720-OMSCs exhibited elevated mitochondrial respiratory capacity and higher mitochondrial membrane potential. In vivo study demonstrated that SRT1720-OMSCs had higher engraftment rates than Vehicle-OMSCs at 3 days after transplantation into the infarcted nonhuman primate hearts. Taken together, these results suggest that SRT1720 promotes mitochondrial biogenesis and function of aged hMSCs, which is involved in its protective effects against H2O2-induced apoptosis. These findings encourage further exploration of the optimization of aged stem cells function via regulating mitochondrial function.


Subject(s)
Heterocyclic Compounds, 4 or More Rings/pharmacology , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/drug effects , Mitochondria/drug effects , Myocardial Infarction/therapy , Organelle Biogenesis , Aged , Animals , Apoptosis/drug effects , Cells, Cultured , Graft Survival/drug effects , Humans , Macaca fascicularis , Magnetic Resonance Imaging/methods , Male , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/physiopathology , Sirtuin 1/metabolism , Transplantation, Heterologous
14.
FASEB J ; 35(2): e21183, 2021 02.
Article in English | MEDLINE | ID: mdl-33184978

ABSTRACT

Calcific aortic valve disease (CAVD) is the most common valvular heart disease in adults. The cellular mechanisms of CAVD are still unknown, but accumulating evidence has revealed that osteogenic differentiation of human valve interstitial cells (hVICs) plays an important role in CAVD. Thus, we aimed to investigate the function of estrogen-related receptor α (ERRα) in the osteogenic differentiation of hVICs. We found that the level of ERRα was significantly increased in CAVD samples compared to normal controls. In addition, ERRα was significantly upregulated during hVIC osteogenic differentiation in vitro. Gain- and loss-of-function experiments were performed to identify the function of ERRα in hVIC calcification in vitro. Inhibition of endogenous ERRα attenuated hVIC calcification, whereas overexpression of ERRα in hVICs promoted this process. RNA sequencing results suggested that heme oxygenase-1 (Hmox1) was a downstream target of ERRα, which was further confirmed by western blotting. Additionally, we also found that downregulation of Hmox1 by shHmox1 efficiently reversed the inhibition of calcification induced by ERRα shRNA in hVICs. ChIP-qPCR and luciferase assays indicated that Hmox1 was negatively regulated by ERRα. We found that overexpression of Hmox1 or its substrates significantly inhibited hVIC calcification in vitro. In conclusion, we found that knockdown of ERRα can inhibit hVIC calcification through upregulating Hmox1 and that ERRα and Hmox1 are potential targets for the treatment of CAVD.


Subject(s)
Aortic Valve Stenosis/metabolism , Aortic Valve/pathology , Calcinosis/metabolism , Gene Knockdown Techniques , Heme Oxygenase-1/metabolism , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Aged , Aortic Valve/metabolism , Aortic Valve Stenosis/pathology , Calcinosis/pathology , Cell Differentiation/genetics , Female , HEK293 Cells , Heme Oxygenase-1/genetics , Humans , Male , Middle Aged , Osteogenesis/genetics , Transfection , Up-Regulation/genetics , Vascular Calcification , ERRalpha Estrogen-Related Receptor
15.
J Mol Cell Cardiol ; 150: 54-64, 2021 01.
Article in English | MEDLINE | ID: mdl-33045251

ABSTRACT

AIMS: Calcific aortic valve disease (CAVD) is a primary cause of cardiovascular mortality; however, its mechanisms are unknown. Currently, no effective pharmacotherapy is available for CAVD. Aldo-keto reductase family 1 member B (Akr1B1) has been identified as a potential therapeutic target for valve interstitial cell calcification. Herein, we hypothesized that inhibition of Akr1B1 can attenuate aortic valve calcification. METHODS AND RESULTS: Normal and degenerative tricuspid calcific valves from human samples were analyzed by immunoblotting and immunohistochemistry. The results showed significant upregulation of Akr1B1 in CAVD leaflets. Akr1B1 inhibition attenuated calcification of aortic valve interstitial cells in osteogenic medium. In contrast, overexpression of Akr1B1 aggravated calcification in osteogenic medium. Mechanistically, using RNA sequencing (RNAseq), we revealed that Hippo-YAP signaling functions downstream of Akr1B1. Furthermore, we established that the protein level of the Hippo-YAP signaling effector active-YAP had a positive correlation with Akr1B1. Suppression of YAP reversed Akr1B1 overexpression-induced Runx2 upregulation. Moreover, YAP activated the Runx2 promoter through TEAD1 in a manner mediated by ChIP and luciferase reporter systems. Animal experiments showed that the Akr1B1 inhibitor epalrestat attenuated aortic valve calcification induced by a Western diet in LDLR-/- mice. CONCLUSION: This study demonstrates that inhibition of Akr1B1 can attenuate the degree of calcification both in vitro and in vivo. The Akr1B1 inhibitor epalrestat may be a potential treatment option for CAVD.


Subject(s)
Aldehyde Reductase/metabolism , Aldo-Keto Reductases/metabolism , Aortic Valve Stenosis/enzymology , Aortic Valve Stenosis/pathology , Aortic Valve/enzymology , Aortic Valve/pathology , Calcinosis/enzymology , Calcinosis/pathology , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Adaptor Proteins, Signal Transducing/metabolism , Aldehyde Reductase/antagonists & inhibitors , Animals , Aortic Valve/drug effects , Core Binding Factor Alpha 1 Subunit/metabolism , Enzyme Inhibitors/pharmacology , Gene Knockdown Techniques , Humans , Lentivirus/metabolism , Mice , Osteogenesis/drug effects , Signal Transduction/drug effects , Transcription Factors/metabolism , YAP-Signaling Proteins
16.
Front Cell Dev Biol ; 8: 588023, 2020.
Article in English | MEDLINE | ID: mdl-33195247

ABSTRACT

BACKGROUND: Poor cell survival after transplantation restricts the therapeutic potential of mesenchymal stem cell (MSC) transplantation into infarcted hearts, particularly in older individuals. TPP1, a component of the shelterin complex that is involved in telomere protection, is highly expressed in young MSCs but declines in aged ones. Here, we explore whether TPP1 overexpression in aged mouse MSCs improves cell viability in vivo and in vitro. METHODS: Aged mouse MSCs overexpressing TPP1 were injected into the peri-infarct area of the mouse heart after left anterior descending coronary artery ligation. In parallel, to evaluate cellular-level effects, H2O2 was applied to MSCs in vitro to mimic the microenvironment of myocardial injury. RESULTS: In vivo, the transplantation of aged MSCs overexpressing TPP1 resulted in improved cell survival, enhanced cardiac function, and reduced fibrosis compared to unmodified aged MSCs. In vitro, TPP1 overexpression protected aged MSCs from H2O2-induced apoptosis and enhanced DNA double-strand break (DSB) repair. In addition, the phosphorylation of AKT and the key DSB repair protein MRE11 were both significantly upregulated in aged MSCs that overexpressed TPP1. CONCLUSIONS: Our results reveal that TPP1 can enhance DNA repair through the AKT/MRE11 pathway, thereby improving the therapeutic effects of aged MSC transplantation and offering significant potential for the clinical application of autologous transplantation in aged patients.

17.
Cell Death Dis ; 9(5): 556, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29748581

ABSTRACT

Accumulating evidence revealed that mesenchymal stem cells (MSCs) confer cardioprotection against myocardial infarction (MI). However, the poor survival and engraftment rate of the transplanted cells limited their therapeutic efficacy in the heart. The enhanced leptin production associated with hypoxia preconditioning contributed to the improved MSCs survival. Mitochondrial integrity determines the cellular fate. Thus, we aimed to investigate whether leptin can enhance mitochondrial integrity of human MSCs (hMSCs) to protect against various stress. In vivo, transplantation of leptin-overexpressing hMSCs into the infarcted heart resulted in improved cell viability, leading to enhanced angiogenesis and cardiac function. In vitro, pretreatment of hMSCs with recombinant leptin (hMSCs-Leppre) displayed improved cell survival against severe ischemic condition (glucose and serum deprivation under hypoxia), which was associated with increased mitochondrial fusion. Subsequently, Optic atrophy 1 (OPA1), a mitochondrial inner membrane protein that regulates fusion and cristae structure, was significantly elevated in the hMSCs-Leppre group, and the protection of leptin was abrogated by targeting OPA1 with a selective siRNA. Furthermore, OMA1, a mitochondrial protease that cleaves OPA1, decreased in a leptin-dependent manner. Pretreatment of cells with an inhibitor of the proteasome (MG132), prevented leptin-induced OMA1 degradation, implicating the ubiquitination/proteasome system as a part of the protective leptin pathway. In addition, GSK3 inhibitor (SB216763) was also involved in the degradation of OMA1. In conclusion, in the hostile microenvironment caused by MI, (a) leptin can maintain the mitochondrial integrity and prolong the survival of hMSCs; (b) leptin-mediated mitochondrial integrity requires phosphorylation of GSK3 as a prerequisite for ubiquitination-depended degradation of OMA1 and attenuation of long-OPA1 cleavage. Thus, leptin targeting the GSK3/OMA1/OPA1 signaling pathway can optimize hMSCs therapy for cardiovascular diseases such as MI.


Subject(s)
GTP Phosphohydrolases/metabolism , Glycogen Synthase Kinase 3/metabolism , Leptin/metabolism , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Metalloendopeptidases/metabolism , Mitochondrial Proteins/metabolism , Ubiquitination , Animals , GTP Phosphohydrolases/antagonists & inhibitors , GTP Phosphohydrolases/genetics , Glycogen Synthase Kinase 3/antagonists & inhibitors , Glycogen Synthase Kinase 3/genetics , Humans , Indoles/pharmacology , Leptin/genetics , Leupeptins/pharmacology , Male , Maleimides/pharmacology , Metalloendopeptidases/genetics , Mice , Mitochondrial Proteins/genetics , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardial Infarction/therapy , Proteolysis/drug effects , Signal Transduction/drug effects , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...