Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 6284, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36271072

ABSTRACT

Lifelong on-device learning is a key challenge for machine intelligence, and this requires learning from few, often single, samples. Memory-augmented neural networks have been proposed to achieve the goal, but the memory module must be stored in off-chip memory, heavily limiting the practical use. In this work, we experimentally validated that all different structures in the memory-augmented neural network can be implemented in a fully integrated memristive crossbar platform with an accuracy that closely matches digital hardware. The successful demonstration is supported by implementing new functions in crossbars, including the crossbar-based content-addressable memory and locality sensitive hashing exploiting the intrinsic stochasticity of memristor devices. Simulations show that such an implementation can be efficiently scaled up for one-shot learning on more complex tasks. The successful demonstration paves the way for practical on-device lifelong learning and opens possibilities for novel attention-based algorithms that were not possible in conventional hardware.


Subject(s)
Algorithms , Neural Networks, Computer , Artificial Intelligence , Computers
2.
IEEE Trans Med Imaging ; 41(6): 1560-1574, 2022 06.
Article in English | MEDLINE | ID: mdl-35030076

ABSTRACT

Medical image segmentation plays a vital role in disease diagnosis and analysis. However, data-dependent difficulties such as low image contrast, noisy background, and complicated objects of interest render the segmentation problem challenging. These difficulties diminish dense prediction and make it tough for known approaches to explore data-specific attributes for robust feature extraction. In this paper, we study medical image segmentation by focusing on robust data-specific feature extraction to achieve improved dense prediction. We propose a new deep convolutional neural network (CNN), which exploits specific attributes of input datasets to utilize deep supervision for enhanced feature extraction. In particular, we strategically locate and deploy auxiliary supervision, by matching the object perceptive field (OPF) (which we define and compute) with the layer-wise effective receptive fields (LERF) of the network. This helps the model pay close attention to some distinct input data dependent features, which the network might otherwise 'ignore' during training. Further, to achieve better target localization and refined dense prediction, we propose the densely decoded networks (DDN), by selectively introducing additional network connections (the 'crutch' connections). Using five public datasets (two retinal vessel, melanoma, optic disc/cup, and spleen segmentation) and two in-house datasets (lymph node and fungus segmentation), we verify the effectiveness of our proposed approach in 2D and 3D segmentation.


Subject(s)
Image Processing, Computer-Assisted , Neural Networks, Computer , Image Processing, Computer-Assisted/methods , Retinal Vessels
3.
Front Med (Lausanne) ; 8: 750396, 2021.
Article in English | MEDLINE | ID: mdl-34820394

ABSTRACT

From diagnosing cardiovascular diseases to analyzing the progression of diabetic retinopathy, accurate retinal artery/vein (A/V) classification is critical. Promising approaches for A/V classification, ranging from conventional graph based methods to recent convolutional neural network (CNN) based models, have been known. However, the inability of traditional graph based methods to utilize deep hierarchical features extracted by CNNs and the limitations of current CNN based methods to incorporate vessel topology information hinder their effectiveness. In this paper, we propose a new CNN based framework, VTG-Net (vessel topology graph network), for retinal A/V classification by incorporating vessel topology information. VTG-Net exploits retinal vessel topology along with CNN features to improve A/V classification accuracy. Specifically, we transform vessel features extracted by CNN in the image domain into a graph representation preserving the vessel topology. Then by exploiting a graph convolutional network (GCN), we enable our model to learn both CNN features and vessel topological features simultaneously. The final predication is attained by fusing the CNN and GCN outputs. Using a publicly available AV-DRIVE dataset and an in-house dataset, we verify the high performance of our VTG-Net for retinal A/V classification over state-of-the-art methods (with ~2% improvement in accuracy on the AV-DRIVE dataset).

4.
Med Phys ; 39(12): 7619-25, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23231309

ABSTRACT

PURPOSE: The three-dimensional digital differential analyzer (3D-DDA) algorithm is a widely used ray traversal method, which is also at the core of many convolution∕superposition (C∕S) dose calculation approaches. However, porting existing C∕S dose calculation methods onto graphics processing unit (GPU) has brought challenges to retaining the efficiency of this algorithm. In particular, straightforward implementation of the original 3D-DDA algorithm inflicts a lot of branch divergence which conflicts with the GPU programming model and leads to suboptimal performance. In this paper, an efficient GPU implementation of the 3D-DDA algorithm is proposed, which effectively reduces such branch divergence and improves performance of the C∕S dose calculation programs running on GPU. METHODS: The main idea of the proposed method is to convert a number of conditional statements in the original 3D-DDA algorithm into a set of simple operations (e.g., arithmetic, comparison, and logic) which are better supported by the GPU architecture. To verify and demonstrate the performance improvement, this ray traversal method was integrated into a GPU-based collapsed cone convolution∕superposition (CCCS) dose calculation program. RESULTS: The proposed method has been tested using a water phantom and various clinical cases on an NVIDIA GTX570 GPU. The CCCS dose calculation program based on the efficient 3D-DDA ray traversal implementation runs 1.42 ∼ 2.67× faster than the one based on the original 3D-DDA implementation, without losing any accuracy. CONCLUSIONS: The results show that the proposed method can effectively reduce branch divergence in the original 3D-DDA ray traversal algorithm and improve the performance of the CCCS program running on GPU. Considering the wide utilization of the 3D-DDA algorithm, various applications can benefit from this implementation method.


Subject(s)
Algorithms , Models, Theoretical , Radiometry/instrumentation , Radiometry/methods , Radiotherapy Dosage , Radiotherapy, Conformal/instrumentation , Radiotherapy, Conformal/methods , Computer Simulation , Signal Processing, Computer-Assisted/instrumentation
5.
Med Phys ; 37(11): 5593-603, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21158271

ABSTRACT

PURPOSE: Dose calculation is a key component in radiation treatment planning systems. Its performance and accuracy are crucial to the quality of treatment plans as emerging advanced radiation therapy technologies are exerting ever tighter constraints on dose calculation. A common practice is to choose either a deterministic method such as the convolution/superposition (CS) method for speed or a Monte Carlo (MC) method for accuracy. The goal of this work is to boost the performance of a hybrid Monte Carlo convolution/superposition (MCCS) method by devising a graphics processing unit (GPU) implementation so as to make the method practical for day-to-day usage. METHODS: Although the MCCS algorithm combines the merits of MC fluence generation and CS fluence transport, it is still not fast enough to be used as a day-to-day planning tool. To alleviate the speed issue of MC algorithms, the authors adopted MCCS as their target method and implemented a GPU-based version. In order to fully utilize the GPU computing power, the MCCS algorithm is modified to match the GPU hardware architecture. The performance of the authors' GPU-based implementation on an Nvidia GTX260 card is compared to a multithreaded software implementation on a quad-core system. RESULTS: A speedup in the range of 6.7-11.4x is observed for the clinical cases used. The less than 2% statistical fluctuation also indicates that the accuracy of the authors' GPU-based implementation is in good agreement with the results from the quad-core CPU implementation. CONCLUSIONS: This work shows that GPU is a feasible and cost-efficient solution compared to other alternatives such as using cluster machines or field-programmable gate arrays for satisfying the increasing demands on computation speed and accuracy of dose calculation. But there are also inherent limitations of using GPU for accelerating MC-type applications, which are also analyzed in detail in this article.


Subject(s)
Neoplasms/radiotherapy , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Algorithms , Computer Graphics , Computers , Humans , Models, Statistical , Monte Carlo Method , Phantoms, Imaging , Photons , Radiation Oncology/methods , Radiotherapy Dosage , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...