Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Analyst ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787653

ABSTRACT

Bioinspired nanochannel-based sensors have elicited significant interest because of their excellent sensing performance, and robust mechanical and tunable chemical properties. However, the existing designs face limitations due to material constraints, which hamper broader application possibilities. Herein, a heteromembrane system composed of a periodic mesoporous organosilica (PMO) layer with three-dimensional (3D) network nanochannels is constructed for glutathione (GSH) detection. The unique hierarchical pore architecture provides a large surface area, abundant reaction sites and plentiful interconnected pathways for rapid ionic transport, contributing to efficient and sensitive detection. Moreover, the thioether groups in nanochannels can be selectively cleaved by GSH to generate hydrophilic thiol groups. Benefiting from the increased hydrophilic surface, the proposed sensor achieves efficient GSH detection with a detection limit of 1.2 µM by monitoring the transmembrane ionic current and shows good recovery ranges in fetal bovine serum sample detection. This work paves an avenue for designing and fabricating nanofluidic sensing systems for practical and biosensing applications.

2.
Neuroimage ; 294: 120627, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38723877

ABSTRACT

Holistic and analytic thinking are two distinct modes of thinking used to interpret the world with relative preferences varying across cultures. While most research on these thinking styles has focused on behavioral and cognitive aspects, a few studies have utilized functional magnetic resonance imaging (fMRI) to explore the correlations between brain metrics and self-reported scale scores. Other fMRI studies used single holistic and analytic thinking tasks. As a single task may involve processing in spurious low-level regions, we used two different holistic and analytic thinking tasks, namely the frame-line task and the triad task, to seek convergent brain regions to distinguish holistic and analytic thinking using multivariate pattern analysis (MVPA). Results showed that brain regions fundamental to distinguish holistic and analytic thinking include the bilateral frontal lobes, bilateral parietal lobes, bilateral precentral and postcentral gyrus, bilateral supplementary motor areas, bilateral fusiform, bilateral insula, bilateral angular gyrus, left cuneus, and precuneus, left olfactory cortex, cingulate gyrus, right caudate and putamen. Our study maps brain regions that distinguish between holistic and analytic thinking and provides a new approach to explore the neural representation of cultural constructs. We provide initial evidence connecting culture-related brain regions with language function to explain the origins of cultural differences in cognitive styles.


Subject(s)
Brain Mapping , Brain , Magnetic Resonance Imaging , Thinking , Humans , Thinking/physiology , Male , Female , Young Adult , Brain Mapping/methods , Adult , Brain/physiology , Brain/diagnostic imaging
3.
NPJ Biofilms Microbiomes ; 10(1): 38, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575604

ABSTRACT

Biofilms serve as crucial cues for settlement and metamorphosis in marine invertebrates. Within bacterial systems, c-di-GMP functions as a pivotal signaling molecule regulating both biofilm formation and dispersion. However, the molecular mechanism of how c-di-GMP modulates biofilm-induced larval metamorphosis remains elusive. Our study reveals that the deletion of a c-di-GMP related gene in Pseudoalteromonas marina led to an increase in the level of bacterial c-di-GMP by knockout technique, and the mutant strain had an enhanced ability to produce more outer membrane vesicles (OMVs) and lipopolysaccharides (LPS). The mutant biofilms had higher induction activity for larval metamorphosis in mussels Mytilus coruscus, and OMVs play a major role in the induction activity. We further explored the function of LPS in OMVs. Extracted LPS induced high larval metamorphosis rate, and LPS content were subject to c-di-GMP and LPS-biosynthesis gene. Thus, we postulate that the impact of c-di-GMP on biofilm-induced metamorphosis is mediated through OMVs and LPS.


Subject(s)
Cyclic GMP/analogs & derivatives , Lipopolysaccharides , Mytilus , Animals , Larva/microbiology , Larva/physiology , Metamorphosis, Biological/genetics , Mytilus/genetics , Mytilus/microbiology , Bacteria
4.
Article in English | MEDLINE | ID: mdl-38670297

ABSTRACT

BACKGROUND: Cardiac allograft vasculopathy (CAV) remains the leading cause of long-term graft failure and mortality after heart transplantation. Effective preventive and treatment options are not available to date, largely because underlying mechanisms remain poorly understood. We studied the potential role of leukotriene B4 (LTB4), an inflammatory lipid mediator, in the development of CAV. METHODS: We used an established preclinical rat CAV model to study the role of LTB4 in CAV. We performed syngeneic and allogeneic orthotopic aortic transplantation, after which neointimal proliferation was quantified. Animals were then treated with Bestatin, an inhibitor of LTB4 synthesis, or vehicle control for 30 days post-transplant, and evidence of graft CAV was determined by histology. We also measured serial LTB4 levels in a cohort of 28 human heart transplant recipients with CAV, 17 matched transplant controls without CAV, and 20 healthy nontransplant controls. RESULTS: We showed that infiltration of the arterial wall with macrophages leads to neointimal thickening and a rise in serum LTB4 levels in our rat model of CAV. Inhibition of LTB4 production with the drug Bestatin prevents development of neointimal hyperplasia, suggesting that Bestatin may be effective therapy for CAV prevention. In a parallel study of heart transplant recipients, we found nonsignificantly elevated plasma LTB4 levels in patients with CAV, compared to patients without CAV and healthy, nontransplant controls. CONCLUSIONS: This study provides key evidence supporting the role of the inflammatory cytokine LTB4 as an important mediator of CAV development and provides preliminary data suggesting the clinical benefit of Bestatin for CAV prevention.

5.
PeerJ ; 12: e16914, 2024.
Article in English | MEDLINE | ID: mdl-38406281

ABSTRACT

Background: Paphiopedilum armeniacum (P. armeniacum), an ornamental plant native to China, is known for its distinctive yellow blossoms. However, the mechanisms underlying P. armeniacum flower coloration remain unclear. Methods: We selected P. armeniacum samples from different flowering stages and conducted rigorous physicochemical analyses. The specimens were differentiated based on their chemical properties, specifically their solubilities in polar solvents. This key step enabled us to identify the main metabolite of flower color development of P. armeniacum, and to complete the identification by High-performance liquid chromatography (HPLC) based on the results. Additionally, we employed a combined approach, integrating both third-generation full-length transcriptome sequencing and second-generation high-throughput transcriptome sequencing, to comprehensively explore the molecular components involved. Results: We combined physical and chemical analysis with transcriptome sequencing to reveal that carotenoid is the main pigment of P. armeniacum flower color. Extraction colorimetric method and HPLC were used to explore the characteristics of carotenoid accumulation during flowering. We identified 28 differentially expressed carotenoid biosynthesis genes throughout the flowering process, validated their expression through fluorescence quantification, and discovered 19 potential positive regulators involved in carotenoid synthesis. Among these candidates, three RCP2 genes showed a strong potential for governing the PDS and ZDS gene families. In summary, our study elucidates the fundamental mechanisms governing carotenoid synthesis during P. armeniacum flowering, enhancing our understanding of this process and providing a foundation for future research on the molecular mechanisms driving P. armeniacum flowering.


Subject(s)
Gene Expression Profiling , Transcriptome , Transcriptome/genetics , Gene Expression Profiling/methods , Carotenoids/metabolism , Flowers/genetics , China
6.
Cell Stem Cell ; 31(3): 334-340.e5, 2024 03 07.
Article in English | MEDLINE | ID: mdl-38335966

ABSTRACT

Allogeneic transplantation of pancreatic islets for patients with difficult-to-control diabetes mellitus is severely hampered by the requirement for continuous immunosuppression and its associated morbidity. We report that allogeneic transplantation of genetically engineered (B2M-/-, CIITA-/-, CD47+), primary, hypoimmune, pseudo-islets (p-islets) results in their engraftment into a fully immunocompetent, diabetic non-human primate wherein they provide stable endocrine function and enable insulin independence without inducing any detectable immune response in the absence of immunosuppression. Hypoimmune primary p-islets may provide a curative cell therapy for type 1 diabetes mellitus.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans Transplantation , Islets of Langerhans , Animals , Humans , Insulin/metabolism , Islets of Langerhans Transplantation/methods , Islets of Langerhans/metabolism , Primates , Diabetes Mellitus, Type 1/therapy , Transplantation, Homologous
7.
Analyst ; 149(5): 1464-1472, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38284827

ABSTRACT

Copper ions (Cu2+), as a crucial trace element, play a vital role in living organisms. Thus, the detection of Cu2+ is of great significance for disease prevention and diagnosis. Nanochannel devices with an excellent nanoconfinement effect show great potential in recognizing and detecting Cu2+ ions. However, these devices often require complicated modification and treatment, which not only damages the membrane structure, but also induces nonspecific, low-sensitivity and non-repeatable detection. Herein, a 2D MXene-carboxymethyl chitosan (MXene/CMC) freestanding membrane with ordered lamellar channels was developed by a super-assembly strategy. The introduction of CMC provides abundant space charges, improving the nanoconfinement effect of the nanochannel. Importantly, the CMC can chelate with Cu2+ ions, endowing the MXene/CMC with the ability to detect Cu2+. The formation of CMC-Cu2+ complexes decreases the space charges, leading to a discernible variation in the current signal. Therefore, MXene/CMC can achieve highly sensitive and stable Cu2+ detection based on the characteristics of nanochannel composition. The linear response range for Cu2+ detection is 10-9 to 10-5 M with a low detection limit of 0.095 nM. Notably, MXene/CMC was successfully applied for Cu2+ detection in real water and fetal bovine serum samples. This work provides a simple, highly sensitive and stable detection platform based on the properties of the nanochannel composition.


Subject(s)
Chitosan , Nitrites , Trace Elements , Transition Elements , Copper , Chitosan/chemistry , Ions/chemistry
8.
Nat Biotechnol ; 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38168996

ABSTRACT

The success of chimeric antigen receptor (CAR) T cell therapy in treating several hematopoietic malignancies has been difficult to replicate in solid tumors, in part because of T cell exhaustion and eventually dysfunction. To counter T cell dysfunction in the tumor microenvironment, we metabolically armored CAR T cells by engineering them to secrete interleukin-10 (IL-10). We show that IL-10 CAR T cells preserve intact mitochondrial structure and function in the tumor microenvironment and increase oxidative phosphorylation in a mitochondrial pyruvate carrier-dependent manner. IL-10 secretion promoted proliferation and effector function of CAR T cells, leading to complete regression of established solid tumors and metastatic cancers across several cancer types in syngeneic and xenograft mouse models, including colon cancer, breast cancer, melanoma and pancreatic cancer. IL-10 CAR T cells also induced stem cell-like memory responses in lymphoid organs that imparted durable protection against tumor rechallenge. Our results establish a generalizable approach to counter CAR T cell dysfunction through metabolic armoring, leading to solid tumor eradication and long-lasting immune protection.

9.
Nat Biotechnol ; 42(3): 413-423, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37156915

ABSTRACT

Genetic engineering of allogeneic cell therapeutics that fully prevents rejection by a recipient's immune system would abolish the requirement for immunosuppressive drugs or encapsulation and support large-scale manufacturing of off-the-shelf cell products. Previously, we generated mouse and human hypoimmune pluripotent (HIP) stem cells by depleting HLA class I and II molecules and overexpressing CD47 (B2M-/-CIITA-/-CD47+). To determine whether this strategy is successful in non-human primates, we engineered rhesus macaque HIP cells and transplanted them intramuscularly into four allogeneic rhesus macaques. The HIP cells survived unrestricted for 16 weeks in fully immunocompetent allogeneic recipients and differentiated into several lineages, whereas allogeneic wild-type cells were vigorously rejected. We also differentiated human HIP cells into endocrinologically active pancreatic islet cells and showed that they survived in immunocompetent, allogeneic diabetic humanized mice for 4 weeks and ameliorated diabetes. HIP-edited primary rhesus macaque islets survived for 40 weeks in an allogeneic rhesus macaque recipient without immunosuppression, whereas unedited islets were quickly rejected.


Subject(s)
Hematopoietic Stem Cell Transplantation , Induced Pluripotent Stem Cells , Islets of Langerhans Transplantation , Mice , Animals , Macaca mulatta , CD47 Antigen , Graft Rejection
10.
Small ; 20(11): e2306910, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37926698

ABSTRACT

Heterogeneous membranes play a crucial role in osmotic energy conversion by effectively reducing concentration polarization. However, most heterogeneous membranes mitigate concentration polarization through an asymmetric charge distribution, resulting in compromised ion selectivity. Herein, hetero-nanochannels with asymmetric wettability composed of 2D mesoporous carbon and graphene oxide are constructed. The asymmetric wettability of the membrane endows it with the ability to suppress the concentration polarization without degrading the ion selectivity, as well as achieving a diode-like ion transport feature. As a result, enhanced osmotic energy harvesting is achieved with a power density of 6.41 W m-2 . This represents a substantial enhancement of 102.80-137.85% when compared to homogeneous 2D membranes, surpassing the performance of the majority of reported 2D membranes. Importantly, the membrane can be further used for high-performance ionic power harvesting by regulating ion transport, exceeding previously reported data by 89.1%.

11.
BMC Public Health ; 23(1): 2277, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37978471

ABSTRACT

BACKGROUND: The relationship between the Coronavirus Disease 2019 (COVID-19) pandemic, which is a traumatic event for adolescents, and procrastination is not clear. Mental health may play an important role in this relationship; however, the underlying mechanisms remain unknown. This study aimed to construct chain mediation models to examine whether anxiety and depression symptoms mediate the effects of the COVID-19 pandemic on procrastination in adolescents. METHODS: A convenience sample of 12 middle and high schools in Harbin, China, with four follow-up online surveys was conducted during the COVID-19 pandemic. A total of 4,156 Chinese adolescents were enrolled in this study, of whom ages 11-18 (Mean = 13.55; SD = 1.18), 50.75% were male, and 93.24% were middle school students. Descriptive demographic analysis and Pearson's correlation analysis of the effects of the COVID-19 pandemic (T1), anxiety(T2), depression (T3), and procrastination (T4) were performed in SPSS 22.0. Chain mediation analysis performed with Mplus 8.3. RESULTS: The effects of the COVID-19 pandemic, anxiety symptoms, depression symptoms, and procrastination were positively correlated (P < 0.01). The effects of the COVID-19 pandemic have a direct link on adolescent procrastination (effect = 0.156; SE = 0.031; 95%CI: 0.092, 0.214), and have three indirect paths on procrastination: the independent mediating role of anxiety symptoms was 29.01% (effect = 0.047; SE = 0.012; 95%CI: 0.024, 0.072), the independent mediating role of depression symptoms was 29.01% (effect = 0.047; SE = 0.010; 95%CI: 0.030, 0.068), as well as the completely chain mediating role of anxiety and depression symptoms was 15.43% (effect = 0.025; SE = 0.005; 95%CI: 0.017, 0.036). CONCLUSIONS: Our results suggest that anxiety and depressive symptoms are part of a causal chain between the effects of the COVID-19 pandemic and procrastination among Chinese adolescents. To effectively reduce their procrastination, attention should be paid to the emotional distress caused to adolescents by major events such as the COVID-19 epidemic. All data were taken from self-reported measures and one city in China, which may bias the results and limit their generalizability.


Subject(s)
COVID-19 , Procrastination , Adolescent , Male , Humans , Female , Pandemics , Longitudinal Studies , Depression/epidemiology , COVID-19/epidemiology , Anxiety/epidemiology , China/epidemiology
12.
Proc Natl Acad Sci U S A ; 120(39): e2305883120, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37725637

ABSTRACT

Inspired by the development of single-atom catalysts (SACs), the fabrication of multimetallic SACs can be a promising technical approach for the in situ electro-Fenton (EF) process. Herein, dual-functional atomically dispersed Mo-Fe sites embedded in carbon nitride (C3N5) (i.e., MoFe/C3N5) were synthesized via a facile SiO2 template method. The atomically isolated bimetallic configuration in MoFe/C3N5 was identified by combining the microscopic and spectroscopic techniques. The MoFe/C3N5 catalyst on the cathode exhibited a remarkable catalytic activity toward the three electron-dominated oxygen reduction reaction in sodium sulfate, leading to a highly effective EF reaction with a low overpotential for the removal of organic contaminants from wastewater. The new catalyst showed a superior performance over its conventional counterparts, owing to the dual functions of the dual-metal active sites. Density functional theory (DFT) analysis revealed that the dual-functional 50-MoFe/C3N5 catalyst enabled a synergistic action of the Mo-Fe dual single atomic centers, which can alter the adsorption/dissociation behavior and decrease the overall reaction barriers for effective organic oxidation during the EF process. This study not only sheds light on the controlled synthesis of atomically isolated catalyst materials but also provides deeper understanding of the structure-performance relationship of the nanocatalysts with dual active sites for the catalytic EF process. Additionally, the findings will promote the advanced catalysis for the treatment of emerging organic contaminants in water and wastewater.

13.
Sci Data ; 10(1): 545, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37604823

ABSTRACT

During the past decade, cognitive neuroscience has been calling for population diversity to address the challenge of validity and generalizability, ushering in a new era of population neuroscience. The developing Chinese Color Nest Project (devCCNP, 2013-2022), the first ten-year stage of the lifespan CCNP (2013-2032), is a two-stages project focusing on brain-mind development. The project aims to create and share a large-scale, longitudinal and multimodal dataset of typically developing children and adolescents (ages 6.0-17.9 at enrolment) in the Chinese population. The devCCNP houses not only phenotypes measured by demographic, biophysical, psychological and behavioural, cognitive, affective, and ocular-tracking assessments but also neurotypes measured with magnetic resonance imaging (MRI) of brain morphometry, resting-state function, naturalistic viewing function and diffusion structure. This Data Descriptor introduces the first data release of devCCNP including a total of 864 visits from 479 participants. Herein, we provided details of the experimental design, sampling strategies, and technical validation of the devCCNP resource. We demonstrate and discuss the potential of a multicohort longitudinal design to depict normative brain growth curves from the perspective of developmental population neuroscience. The devCCNP resource is shared as part of the "Chinese Data-sharing Warehouse for In-vivo Imaging Brain" in the Chinese Color Nest Project (CCNP) - Lifespan Brain-Mind Development Data Community ( https://ccnp.scidb.cn ) at the Science Data Bank.


Subject(s)
Asian People , Brain , Humans , Brain/diagnostic imaging , China , Data Warehousing , Databases, Factual , Neurosciences
14.
Nurs Ethics ; 30(7-8): 922-938, 2023.
Article in English | MEDLINE | ID: mdl-37632155

ABSTRACT

BACKGROUND: "Crisis military deployment" was defined as a situation in which military personnel are suddenly ordered to duty to support an operation away from their home station and in a potentially dangerous environment. As a result of complex changes in the global political and economic landscape, military nurses are assuming an increasing number of crisis military deployment tasks. Moral distress has been widely studied among civilian nurses. However, little is known about the moral distress military nurses experience during military deployments in crisis. AIM: This review discussed the current state of research on the phenomenon, unique factors, specific sources, and measurement tools. METHODS: The scope of the study was defined using a framework developed by Arksey and O'Malley. Following English databases were searched: PubMed, CINAHL, Cochrane Library, Web of Science, and Embase, using MeSH terms and free word combinations; furthermore, Chinese databases: CNKI and CBMDisc, were explored using thematic terms from inception until January 20, 2023. Data were selected and defined by the inclusion and exclusion criteria and independently screened by two researchers. ETHICAL CONSIDERATIONS: The scoping review adhered to sound scientific practice and respected authorship and reference sources. RESULTS: Finally, 21 articles were included in the review. The moral distress of military nurses in crisis military deployments had unique and specific sources and reported positive aspects. The deployment environment and nature of the mission, responsibilities and obligations of military nurses, and the limited rights of patients were unique factors. Specific sources included third-party intervention, military triage, resource allocation, futile care, care of the enemy, and return to the battlefield. Military nurses in deployment reported positive aspects. They grow in their inner strength, build deep friendships and gain a greater sense of professional value. CONCLUSION: It is important to understand the unique factors and specific sources of moral distress faced by military nurses in crisis military deployments and to identify the positive aspects. This research will help prepare military nurses for future deployments in advance by providing useful information to mitigate and eliminate moral distress.


Subject(s)
Ethics, Nursing , Military Deployment , Military Personnel , Nurses , Humans , Morals , Nurses/psychology
15.
BMC Med Genomics ; 16(1): 169, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37461017

ABSTRACT

BACKGROUND: NF-κB signaling pathway participate closely in regulating inflammation and immune response in many cancers. Long non-coding RNAs (lncRNAs) associated with NF-κB signaling have not been characterized in cervical cancer. This study revealed the linkage between tumor microenvironment and NF-κB signaling-associated lncRNAs in cervical cancer. MATERIALS AND METHODS: The expression profiles of cervical cancer samples from The Cancer Genome Atlas (TCGA) database were downloaded. NF-κB signaling-associated lncRNAs were screened as a basis to perform molecular subtyping. Immune cell infiltration was assessed by ESTIMATE, Microenvironment Cell Populations (MCP)-counter and single sample gene set enrichment analysis (ssGSEA). The key NF-κB signaling-associated lncRNAs were identified by univariate analysis, least absolute shrinkage and selection operator, and stepAIC. RESULTS: Three molecular subtypes or clusters (cluster 3, cluster 2, and cluster 1) were categorized based on 27 prognostic NF-κB signaling-associated lncRNAs. Cluster 2 had the worst prognosis, highest immune infiltration, as well as the highest expression of most of immune checkpoints. Three clusters showed different sensitivities to immunotherapy and chemotherapy. Six key NF-κB signaling-associated lncRNAs were screened to establish a six-lncRNA risk model for predicting cervical cancer prognosis. CONCLUSIONS: NF-κB signaling-associated lncRNAs played an important role in regulating immune microenvironment. The subtyping based on NF-κB signaling-associated lncRNAs may assist in the selection of optimal treatments. The six key NF-κB signaling-associated lncRNAs could act as prognostic biomarkers in prognostic prediction for cervical cancer.


Subject(s)
RNA, Long Noncoding , Uterine Cervical Neoplasms , Female , Humans , NF-kappa B , Uterine Cervical Neoplasms/genetics , RNA, Long Noncoding/genetics , Tumor Microenvironment , Signal Transduction , Prognosis , Biomarkers, Tumor/genetics
16.
Chem Biol Interact ; 382: 110631, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37451664

ABSTRACT

Telomeres are unique structures located at the ends of linear chromosomes, responsible for stabilizing chromosomal structures. They are synthesized by telomerase, a reverse transcriptase ribonucleoprotein complex. Telomerase activity is generally absent in human somatic cells, except in stem cells and germ cells. Every time a cell divides, the telomere sequence is shortened, eventually leading to replicative senescence and cell apoptosis when the telomeres reach a critical limit. However, most human cancer cells exhibit increased telomerase activity, allowing them to divide continuously. The importance of telomerase in cancer and aging has made developing drugs targeting telomerase a focus of research. Such drugs can inhibit cancer cell growth and delay aging by enhancing telomerase activity in telomere-related syndromes or diseases. This review provides an overview of telomeres, telomerase, and their regulation in cancer and aging, and highlights small-molecule drugs targeting telomerase in these fields.


Subject(s)
Neoplasms , Telomerase , Humans , Telomerase/genetics , Telomerase/metabolism , Aging , Neoplasms/drug therapy , Neoplasms/genetics , Telomere/metabolism , Stem Cells/metabolism , Cellular Senescence
17.
Water Res ; 243: 120376, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37516077

ABSTRACT

Membrane distillation (MD) for water desalination and purification has been gaining prominence to address the issues relating to water security and the destruction of aquatic ecosystems globally. Recent advances in electrospun membranes for MD application have improved antifouling and anti-wetting performance. However, the environmental impacts associated with producing novel electrospun membranes still need to be clarified. It is imperative to quantify and analyze the tradeoffs between membrane performance and impacts at the early stages of research on these novel membranes. Life Cycle Assessment (LCA) is an appropriate tool to systematically account for environmental performance, all the way from raw material extraction to the disposal of any product, process, or technology. The inherent lack of detailed datasets for emerging technologies contributes to significant uncertainties, making the adoption of traditional LCA challenging. A dynamic LCA (dLCA) is performed to guide the sustainable design and selection of emerging electrospun poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) electrospun membrane (E-PH) and hybridizing polydimethylsiloxane (PDMS) on E-PH membrane (E-PDMS) for dyeing wastewater treatment technologies. The associated environmental impacts are related to the high energy demands required for fabricating electrospun nanofibrous membranes. After LCA analysis, the E-PDMS membrane emerges as a promising membrane, due to the relatively low impact/benefit ratio and the high performance achieved in treating dyeing wastewater.


Subject(s)
Nanofibers , Water Purification , Animals , Distillation , Ecosystem , Membranes, Artificial , Life Cycle Stages
18.
Biofouling ; 39(4): 359-370, 2023.
Article in English | MEDLINE | ID: mdl-37293733

ABSTRACT

Despite the importance of outer membrane vesicles (OMVs) in benthic animal settlement, the underlying molecular mechanism remains elusive. Here, the impact of OMVs and OMVs synthesis-related tolB gene in Mytilus coruscus plantigrade settlement was tested. The OMVs were extracted from Pseudoalteromonas marina through density gradient centrifugation, and a tolB knockout strain, achieved by homologous recombination, was utilized for the investigation. Our results demonstrated that OMVs could significantly enhance M. coruscus plantigrades settlement. Deleting the tolB resulted in downregulation of c-di-GMP, accompanied by a reduction of OMV production, a decline in bacterial motility and increasing biofilm-forming ability. Enzyme treatment resulted in a 61.11% reduction in OMV-inducing activity and a 94.87% reduction in LPS content. Thus, OMVs regulate mussel settlement via LPS, and c-di-GMP is responsible for the OMV-inducing capacity. These findings provide new insights into the interactions between bacteria and mussels.


Subject(s)
Cyclic GMP , Mytilus , Animals , Bacterial Outer Membrane Proteins/genetics , Biofilms , Cyclic GMP/metabolism , Lipopolysaccharides , Mytilus/genetics , Mytilus/physiology
19.
Int J Mol Sci ; 24(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37108636

ABSTRACT

The outer membrane protein (OMP) is a kind of biofilm matrix component that widely exists in Gram-negative bacteria. However, the mechanism of OMP involved in the settlement of molluscs is still unclear. In this study, the mussel Mytilus coruscus was selected as a model to explore the function of ompR, a two-component system response regulator, on Pseudoalteromonas marina biofilm-forming capacity and the mussel settlement. The motility of the ΔompR strain was increased, the biofilm-forming capacity was decreased, and the inducing activity of the ΔompR biofilms in plantigrades decreased significantly (p < 0.05). The extracellular α-polysaccharide and ß-polysaccharide of the ΔompR strain decreased by 57.27% and 62.63%, respectively. The inactivation of the ompR gene decreased the ompW gene expression and had no impact on envZ expression or c-di-GMP levels. Adding recombinant OmpW protein caused the recovery of biofilm-inducing activities, accompanied by the upregulation of exopolysaccharides. The findings deepen the understanding of the regulatory mechanism of bacterial two-component systems and the settlement of benthic animals.


Subject(s)
Biofilms , Mytilus , Animals , Mytilus/genetics , Mytilus/microbiology , Bacteria/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
20.
Plants (Basel) ; 12(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37050084

ABSTRACT

Plants of the genus Narcissus are well-known for their characteristic corona morphology, which structural origins have been a bone of contention among scholars. With "Jinzhanyintai" (JZ) and "Yulinglong" (YLL)-two major close-originated cultivars of Chinese narcissus (Narcissus tazetta L. var. chinensis Roem)-as materials, anatomic observation was made on floral organs during corona morphogenesis by dissection with hands under a stereomicroscope, paraffin section, scanning electron microscopy, and high-resolution X-ray tomography. It was uncovered that corona primordia of both cultivars appeared following the end of the differentiation of other floral organs, with differentiation sites located at the inner wall of the juncture of the base of tepals and the upper margin of the hypanthium. Affected by staminal filaments, the corona primordia of JZ experienced a three-stage differentiation process, namely blockage from the second whorl of stamens, blockage from the first whorl of stamens, and healing of corona primordia. However, the expanded spatial structure of the first whorl of petal-like stamens blocked the path of differentiation of YLL corona primordia, giving rise to slow differentiation of the corona primordia at the base of the first whorl of petal-like stamens and malformed differentiation of the corona primordia in the interval between the two whorls of petal-like stamens. Thus, a fragmented structure consisting of typical and fragmented coronas was formed. Furthermore, petal-like stamens of YLL in the lower part had a corona-like morphology. The spatio-temporal specificity of corona differentiation convincingly demonstrates that the corona is a structure independent of and different from the typical four whorls of floral organs, but also highly correlated with stamen.

SELECTION OF CITATIONS
SEARCH DETAIL
...