Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.049
Filter
1.
Cereb Cortex ; 34(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38715406

ABSTRACT

Presbycusis has been reported as related to cognitive decline, but its underlying neurophysiological mechanism is still unclear. This study aimed to investigate the relationship between metabolite levels, cognitive function, and node characteristics in presbycusis based on graph theory methods. Eighty-four elderly individuals with presbycusis and 63 age-matched normal hearing controls underwent magnetic resonance spectroscopy, functional magnetic resonance imaging scans, audiological assessment, and cognitive assessment. Compared with the normal hearing group, presbycusis patients exhibited reduced gamma-aminobutyric acid and glutamate levels in the auditory region, increased nodal characteristics in the temporal lobe and precuneus, as well as decreased nodal characteristics in the superior occipital gyrus and medial orbital. The right gamma-aminobutyric acid levels were negatively correlated with the degree centrality in the right precuneus and the executive function. Degree centrality in the right precuneus exhibited significant correlations with information processing speed and executive function, while degree centrality in the left medial orbital demonstrated a negative association with speech recognition ability. The degree centrality and node efficiency in the superior occipital gyrus exhibited a negative association with hearing loss and speech recognition ability, respectively. These observed changes indicate alterations in metabolite levels and reorganization patterns at the brain network level after auditory deprivation.


Subject(s)
Cognitive Dysfunction , Magnetic Resonance Imaging , Presbycusis , Humans , Male , Female , Presbycusis/diagnostic imaging , Presbycusis/metabolism , Presbycusis/physiopathology , Aged , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/physiopathology , Magnetic Resonance Spectroscopy , Glutamic Acid/metabolism , gamma-Aminobutyric Acid/metabolism , Middle Aged , Brain/diagnostic imaging , Brain/metabolism
2.
Front Pediatr ; 12: 1388921, 2024.
Article in English | MEDLINE | ID: mdl-38725987

ABSTRACT

Objectives: To develop a predictive model for patent ductus arteriosus (PDA) in preterm infants at seven days postpartum. The model employs ultrasound measurements of the ductus arteriosus (DA) intimal thickness (IT) obtained within 24 h after birth. Methods: One hundred and five preterm infants with gestational ages ranging from 27.0 to 36.7 weeks admitted within 24 h following birth were prospectively enrolled. Echocardiographic assessments were performed to measure DA IT within 24 h after birth, and DA status was evaluated through echocardiography on the seventh day postpartum. Potential predictors were considered, including traditional clinical risk factors, M-mode ultrasound parameters, lumen diameter of the DA (LD), and DA flow metrics. A final prediction model was formulated through bidirectional stepwise regression analysis and subsequently subjected to internal validation. The model's discriminative ability, calibration, and clinical applicability were also assessed. Results: The final predictive model included birth weight, application of mechanical ventilation, left ventricular end-diastolic diameter (LVEDd), LD, and the logarithm of IT (logIT). The receiver operating characteristic (ROC) curve for the model, predicated on logIT, exhibited excellent discriminative power with an area under the curve (AUC) of 0.985 (95% CI: 0.966-1.000), sensitivity of 1.000, and specificity of 0.909. Moreover, the model demonstrated robust calibration and goodness-of-fit (χ2 value = 0.560, p > 0.05), as well as strong reproducibility (accuracy: 0.935, Kappa: 0.773), as evidenced by 10-fold cross-validation. A decision curve analysis confirmed the model's broad clinical utility. Conclusions: Our study successfully establishes a predictive model for PDA in preterm infants at seven days postpartum, leveraging the measurement of DA IT. This model enables identifying, within the first 24 h of life, infants who are likely to benefit from timely DA closure, thereby informing treatment decisions.

3.
Int Immunopharmacol ; 135: 112333, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38805907

ABSTRACT

Macrophages are one of the important immune cells, which play important roles in innate and adaptive immune. However, the roles of macrophages in food allergy are not thoroughly understood. To investigate the roles of macrophages during food allergy, we focused on the relationship between macrophage polarization and allergic responses induced by tropomyosin (TM) in the present study. Arg 1 and CD206 expressions in the TM group were significantly higher than those of the PBS group, while iNOS and TNF-α expressions were no obvious difference, moreover, the morphology of macrophages stimulated by TM was similar to that of M2 macrophages. These results indicated macrophages were mainly polarized toward M2 phenotypes in vitro. The antibodies, mMCP-1, histamine and cytokines, revealed that macrophages could participate in food allergy, and macrophage polarization was associated with changes in allergic-related factors. The cytokine levels of M2 phenotypes were significantly higher than those of M1 phenotypes in peripheral blood. The mRNA expressions and protein levels of Arg1 and iNOS in the jejunum and peritoneal cells indicated that M2 phenotypes were the major macrophage in these tissues compared with M1 phenotypes. Hence, macrophage polarization plays an important role in food allergy.

4.
Res Sq ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38798564

ABSTRACT

Studying lung adenocarcinoma (LUAD) early carcinogenesis is challenging, primarily due to the lack of LUAD precursors specimens. We amassed multi-omics data from 213 LUAD and LUAD precursors to identify molecular features underlying LUAD precancer evolution. We observed progressively increasing mutations, chromosomal aberrations, whole genome doubling and genomic instability from precancer to invasive LUAD, indicating aggravating chromosomal instability (CIN). Telomere shortening, a crucial genomic alteration linked to CIN, emerged at precancer stage. Moreover, later-stage lesions demonstrated increasing cancer stemness and decreasing alveolar identity, suggesting epithelial de-differentiation during early LUAD carcinogenesis. The innate immune cells progressively diminished from precancer to invasive LUAD, concomitant with a gradual recruitment of adaptive immune cells (except CD8+ and gamma-delta T cells that decreased in later stages) and upregulation of numerous immune checkpoints, suggesting LUAD precancer evolution is associated with a shift from innate to adaptive immune response and immune evasion mediated by various mechanisms.

6.
Int Orthop ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775826

ABSTRACT

PURPOSE: Resection of pelvic bone tumours and subsequent pelvic girdle reconstruction pose formidable challenges due to the intricate anatomy, weight-bearing demands, and significant defects. 3D-printed implants have improved pelvic girdle reconstruction by enabling precise resections with customized guides, offering tailored solutions for diverse bone defect morphology, and integrating porous surface structures to promote osseointegration. Our study aims to evaluate the long-term efficacy and feasibility of 3D-printed hemipelvic reconstruction following resection of malignant pelvic tumours. METHODS: A retrospective review was conducted on 96 patients with primary pelvic malignancies who underwent pelvic girdle reconstruction using 3D-printed custom hemipelvic endoprostheses between January 2017 and May 2022. Follow-up duration was median 48.1 ± 17.9 months (range, 6 to 76 months). Demographic data, imaging examinations, surgical outcomes, and oncological evaluations were extracted and analyzed. The primary endpoints included oncological outcomes and functional status assessed by the Musculoskeletal Tumor Society (MSTS-93) score. Secondary endpoints comprised surgical duration, intraoperative bleeding, pain control and complications. RESULTS: In 96 patients, 70 patients (72.9%) remained disease-free, 15 (15.6%) had local recurrence, and 11 (11.4%) succumbed to metastatic disease. Postoperatively, function improved with MSTS-93 score increasing from 12.2 ± 2.0 to 23.8 ± 3.8. The mean operating time was 275.1 ± 94.0 min, and the mean intraoperative blood loss was 1896.9 ± 801.1 ml. Pain was well-managed, resulting in substantial improvements in VAS score (5.3 ± 1.8 to 1.4 ± 1.1). Complications occurred in 13 patients (13.5%), including poor wound healing (6.3%), deep prosthesis infection (4.2%), hip dislocation (2.1%), screw fracture (1.0%), and interface loosening (1.0%). Additionally, all patients achieved precise implantation of customized prosthetics according to preoperative plans. T-SMART revealed excellent integration at the prosthesis-bone interface for all patients. CONCLUSION: The use of a 3D-printed custom hemipelvic endoprosthesis, characterized by anatomically designed contours and a porous biomimetic surface structure, offers a potential option for pelvic girdle reconstruction following internal hemipelvectomy in primary pelvic tumor treatment. Initial results demonstrate stable fixation and satisfactory mid-term functional and radiographic outcomes.

7.
Chemosphere ; 359: 142276, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38761830

ABSTRACT

The production of solid wastes in the metallurgical industry has significant implications for land resources and environmental pollution. To address this issue, it is crucial to explore the potential of recycling these solid wastes to reduce land occupation while protecting the environment and promoting resource utilization. Steel slag, red mud, copper slag and steel picking waste liquor are examples of solid wastes generated during the metallurgical process that possess high iron content and Fe species, making them excellent catalysts for persulfate-based advanced oxidation processes (PS-AOPs). This review elucidates the catalytic mechanisms and pathways of Fe2+ and Fe0 in the activation PS. Additionally, it underscores the potential of metallurgical iron-containing solid waste (MISW) as a catalyst for PS activation, offering a viable strategy for its high-value utilization. Lastly, the article provides an outlook towards future challenges and prospects for MISW in PS activation for the degradation of organic pollutants.

8.
Epidemiol Psychiatr Sci ; 33: e28, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764153

ABSTRACT

AIMS: Caused by multiple risk factors, heavy burden of major depressive disorder (MDD) poses serious challenges to public health worldwide over the past 30 years. Yet the burden and attributable risk factors of MDD were not systematically known. We aimed to reveal the long-term spatio-temporal trends in the burden and attributable risk factors of MDD at global, regional and national levels during 1990-2019. METHODS: We obtained MDD and attributable risk factors data from Global Burden of Disease Study 2019. We used joinpoint regression model to assess the temporal trend in MDD burden, and age-period-cohort model to measure the effects of age, period and birth cohort on MDD incidence rate. We utilized population attributable fractions (PAFs) to estimate the specific proportions of MDD burden attributed to given risk factors. RESULTS: During 1990-2019, the global number of MDD incident cases, prevalent cases and disability-adjusted life years (DALYs) increased by 59.10%, 59.57% and 58.57%, respectively. Whereas the global age-standardized incidence rate (ASIR), age-standardized prevalence rate (ASPR) and age-standardized DALYs rate (ASDR) of MDD decreased during 1990-2019. The ASIR, ASPR and ASDR in women were 1.62, 1.62 and 1.60 times as that in men in 2019, respectively. The highest age-specific incidence, prevalence and DALYs rate occurred at the age of 60-64 in women, and at the age of 75-84 in men, but the maximum increasing trends in these age-specific rates occurred at the age of 5-9. Population living during 2000-2004 had higher risk of MDD. MDD burden varied by socio-demographic index (SDI), regions and nations. In 2019, low-SDI region, Central sub-Saharan Africa and Uganda had the highest ASIR, ASPR and ASDR. The global PAFs of intimate partner violence (IPV), childhood sexual abuse (CSA) and bullying victimization (BV) were 8.43%, 5.46% and 4.86% in 2019, respectively. CONCLUSIONS: Over the past 30 years, the global ASIR, ASPR and ASDR of MDD had decreased trends, while the burden of MDD was still serious, and multiple disparities in MDD burden remarkably existed. Women, elderly and populations living during 2000-2004 and in low-SDI regions, had more severe burden of MDD. Children were more susceptible to MDD. Up to 18.75% of global MDD burden would be eliminated through early preventing against IPV, CSA and BV. Tailored strategies-and-measures in different regions and demographic groups based on findings in this studywould be urgently needed to eliminate the impacts of modifiable risk factors on MDD, and then mitigate the burden of MDD.


Subject(s)
Depressive Disorder, Major , Global Burden of Disease , Global Health , Humans , Depressive Disorder, Major/epidemiology , Risk Factors , Global Burden of Disease/trends , Female , Male , Incidence , Global Health/statistics & numerical data , Adult , Prevalence , Middle Aged , Spatio-Temporal Analysis , Aged , Disability-Adjusted Life Years/trends , Young Adult , Cost of Illness , Adolescent
9.
Plant Physiol Biochem ; 211: 108701, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723489

ABSTRACT

Graphitic carbon nitride (g-C3N4) is a promising candidate for heavy metal remediation, primarily composed of carbon (C) and nitrogen (N). It has been demonstrated that g-C3N4 adjusts rhizosphere physicochemical conditions, especially N conditions, alleviating the absorption and accumulation of Cadmium (Cd) by soybeans. However, the mechanisms by which g-C3N4 induces N alterations to mitigates plant uptake of Cd remain unclear. This study investigated the impact of g-C3N4-mediated changes in N conditions on the accumulation of Cd by soybeans using pot experiments. It also explored the microbiological mechanisms underlying alterations in soybean rhizospheric N cycling induced by g-C3N4. It was found that g-C3N4 significantly increased N content in the soybean rhizosphere (p < 0.05), particularly in terms of available nitrogen (AN) of nitrate and ammonium. Plants absorbed more ammonium nitrogen (NH4⁺-N), the content of which in the roots showed a significant negative correlation with Cd concentration in plant (p < 0.05). Additionally, g-C3N4 significantly affected rhizospheric functional genes associated with N cycling (p < 0.05) by increasing the ratio of the N-fixation functional gene nifH and decreasing the ratios of functional genes amoA and nxrA involved in nitrification. This enhances soybean's N-fixing potential and suppresses denitrification potential in the rhizosphere, preserving NH4⁺-N. Niastella, Flavisolibacter, Opitutus and Pirellula may play a crucial role in the N fixation and preservation process. In summary, the utilization of g-C3N4 offers a novel approach to ensure safe crop production in Cd-contaminated soils. The results of this study provide valuable data and a theoretical foundation for the remediation of Cd polluted soils.


Subject(s)
Cadmium , Glycine max , Graphite , Nitrogen , Rhizosphere , Glycine max/metabolism , Glycine max/drug effects , Glycine max/microbiology , Cadmium/toxicity , Cadmium/metabolism , Nitrogen/metabolism , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Nitrogen Compounds/metabolism , Plant Roots/metabolism , Plant Roots/drug effects , Plant Roots/microbiology
10.
Neuroimage ; 293: 120632, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38701994

ABSTRACT

During aging, the brain is subject to greater oxidative stress (OS), which is thought to play a critical role in cognitive impairment. Glutathione (GSH), as a major antioxidant in the brain, can be used to combat OS. However, how brain GSH levels vary with age and their associations with cognitive function is unclear. In this study, we combined point-resolved spectroscopy and edited spectroscopy sequences to investigate extended and closed forms GSH levels in the anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), and occipital cortex (OC) of 276 healthy participants (extended form, 166 females, age range 20-70 years) and 15 healthy participants (closed form, 7 females, age range 26-56 years), and examined their relationships with age and cognitive function. The results revealed decreased extended form GSH levels with age in the PCC among 276 participants. Notably, the timecourse of extended form GSH level changes in the PCC and ACC differed between males and females. Additionally, positive correlations were observed between extended form GSH levels in the PCC and OC and visuospatial memory. Additionally, a decreased trend of closed form GSH levels with age was also observed in the PCC among 15 participants. Taken together, these findings enhance our understanding of the brain both closed and extended form GSH time course during normal aging and associations with sex and memory, which is an essential first step for understanding the neurochemical underpinnings of healthy aging.


Subject(s)
Aging , Glutathione , Humans , Female , Middle Aged , Male , Adult , Aged , Glutathione/metabolism , Aging/metabolism , Aging/physiology , Young Adult , Spatial Memory/physiology , Occipital Lobe/metabolism , Gyrus Cinguli/metabolism , Brain/metabolism
11.
Insights Imaging ; 15(1): 119, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755299

ABSTRACT

OBJECTIVE: The study aimed to investigate the predictive value of dynamic contrast-enhanced ultrasound (DCE-US) in differentiating small-duct (SD) and large-duct (LD) types of intrahepatic cholangiocarcinoma (ICC). METHODS: This study retrospectively enrolled 110 patients with pathologically confirmed ICC lesions who were subject to preoperative contrast-enhanced ultrasound (CEUS) examinations between January 2022 and February 2023. Patients were further classified according to the subtype: SD-type and LD-type, and an optimal predictive model was established and validated using the above pilot cohort. The test cohort, consisting of 48 patients prospectively enrolled from March 2023 to September 2023, was evaluated. RESULTS: In the pilot cohort, compared with SD-type ICCs, more LD-type ICCs showed elevated carcinoembryonic antigen (p < 0.001), carbohydrate antigen 19-9 (p = 0.004), ill-defined margin (p = 0.018), intrahepatic bile duct dilation (p < 0.001). Among DCE-US quantitative parameters, the wash-out area under the curve (WoAUC), wash-in and wash-out area under the curve (WiWoAUC), and fall time (FT) at the margin of lesions were higher in the SD-type group (all p < 0.05). Meanwhile, the mean transit time (mTT) and wash-out rate (WoR) at the margin of the lesion were higher in the LD-type group (p = 0.041 and 0.007, respectively). Logistic regression analysis showed that intrahepatic bile duct dilation, mTT, and WoR were significant predictive factors for predicting ICC subtypes, and the AUC of the predictive model achieved 0.833 in the test cohort. CONCLUSIONS: Preoperative DCE-US has the potential to become a novel complementary method for predicting the pathological subtype of ICC. CRITICAL RELEVANCE STATEMENT: DCE-US has the potential to assess the subtypes of ICC lesions quantitatively and preoperatively, which allows for more accurate and objective differential diagnoses, and more appropriate treatments and follow-up or additional examination strategies for the two subtypes. KEY POINTS: Preoperative determination of intrahepatic cholangiocarcinoma (ICC) subtype aids in surgical decision-making. Quantitative parameters from dynamic contrast-enhanced US (DCE-US) allow for the prediction of the ICC subtype. DCE-US-based imaging has the potential to become a novel complementary method for predicting ICC subtypes.

12.
BMC Musculoskelet Disord ; 25(1): 384, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755628

ABSTRACT

BACKGROUND: Customized 3D-printed pelvic implants with a porous structure have revolutionized periacetabular pelvic defect reconstruction after tumor resection, offering improved osteointegration, long-term stability, and anatomical fit. However, the lack of an established classification system hampers implementation and progress. METHODS: We formulated a novel classification system based on pelvic defect morphology and 3D-printed hemipelvis endoprostheses. It integrates surgical approach, osteotomy guide plate and prosthesis design, postoperative rehabilitation plans, and perioperative processes. RESULTS: Retrospectively analyzing 60 patients (31 males, 29 females), we classified them into Type A (15 patients: Aa = 6, Ab = 9), Type B (27 patients: Ba = 15, Bb = 12), Type C (17 patients). All underwent customized osteotomy guide plate-assisted tumor resection and 3D-printed hemipelvic endoprosthesis reconstruction. Follow-up duration was median 36.5 ± 15.0 months (range, 6 to 74 months). The mean operating time was 430.0 ± 106.7 min, intraoperative blood loss 2018.3 ± 1305.6 ml, transfusion volume 2510.0 ± 1778.1 ml. Complications occurred in 13 patients (21.7%), including poor wound healing (10.0%), deep prosthesis infection (6.7%), hip dislocation (3.3%), screw fracture (1.7%), and interface loosening (1.7%). VAS score improved from 5.5 ± 1.4 to 1.7 ± 1.3, MSTS-93 score from 14.8 ± 2.5 to 23.0 ± 5.6. Implant osseointegration success rate was 98.5% (128/130), with one Type Ba patient experiencing distal prosthesis loosening. CONCLUSION: The West China classification may supplement the Enneking and Dunham classification, enhancing interdisciplinary communication and surgical outcomes. However, further validation and wider adoption are required to confirm clinical effectiveness.


Subject(s)
Acetabulum , Bone Neoplasms , Printing, Three-Dimensional , Prosthesis Design , Humans , Female , Male , Retrospective Studies , Adult , Middle Aged , Acetabulum/surgery , Acetabulum/diagnostic imaging , Bone Neoplasms/surgery , Bone Neoplasms/diagnostic imaging , Young Adult , Osteotomy/methods , Plastic Surgery Procedures/methods , Plastic Surgery Procedures/instrumentation , Adolescent , Aged , Treatment Outcome , Postoperative Complications/etiology , Follow-Up Studies , Pelvic Bones/surgery , Pelvic Bones/diagnostic imaging
13.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38731930

ABSTRACT

Soluble starch synthases (SSs) play important roles in the synthesis of cassava starch. However, the expression characteristics of the cassava SSs genes have not been elucidated. In this study, the MeSSIII-1 gene and its promoter, from SC8 cassava cultivars, were respectively isolated by PCR amplification. MeSSIII-1 protein was localized to the chloroplasts. qRT-PCR analysis revealed that the MeSSIII-1 gene was expressed in almost all tissues tested, and the expression in mature leaves was 18.9 times more than that in tuber roots. MeSSIII-1 expression was induced by methyljasmonate (MeJA), abscisic acid (ABA), and ethylene (ET) hormones in cassava. MeSSIII-1 expression patterns were further confirmed in proMeSSIII-1 transgenic cassava. The promoter deletion analysis showed that the -264 bp to -1 bp MeSSIII-1 promoter has basal activity. The range from -1228 bp to -987 bp and -488 bp to -264 bp significantly enhance promoter activity. The regions from -987 bp to -747 bp and -747 bp to -488 bp have repressive activity. These findings will provide an important reference for research on the potential function and transcriptional regulation mechanisms of the MeSSIII-1 gene and for further in-depth exploration of the regulatory network of its internal functional elements.


Subject(s)
Gene Expression Regulation, Plant , Manihot , Plant Proteins , Plants, Genetically Modified , Promoter Regions, Genetic , Manihot/genetics , Manihot/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Starch Synthase/genetics , Starch Synthase/metabolism , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Ethylenes/metabolism
14.
Nano Lett ; 24(20): 6165-6173, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38717317

ABSTRACT

Dynamic therapies, which induce reactive oxygen species (ROS) production in situ through endogenous and exogenous stimulation, are emerging as attractive options for tumor treatment. However, the complexity of the tumor substantially limits the efficacy of individual stimulus-triggered dynamic therapy. Herein, bimetallic copper and ruthenium (Cu@Ru) core-shell nanoparticles are applied for endo-exogenous stimulation-triggered dynamic therapy. The electronic structure of Cu@Ru is regulated through the ligand effects to improve the adsorption level for small molecules, such as water and oxygen. The core-shell heterojunction interface can rapidly separate electron-hole pairs generated by ultrasound and light stimulation, which initiate reactions with adsorbed small molecules, thus enhancing ROS generation. This synergistically complements tumor treatment together with ROS from endogenous stimulation. In vitro and in vivo experiments demonstrate that Cu@Ru nanoparticles can induce tumor cell apoptosis and ferroptosis through generated ROS. This study provides a new paradigm for endo-exogenous stimulation-based synergistic tumor treatment.


Subject(s)
Apoptosis , Copper , Reactive Oxygen Species , Ruthenium , Copper/chemistry , Copper/pharmacology , Humans , Reactive Oxygen Species/metabolism , Animals , Ruthenium/chemistry , Ruthenium/pharmacology , Apoptosis/drug effects , Mice , Cell Line, Tumor , Neoplasms/drug therapy , Neoplasms/therapy , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Ligands , Ferroptosis/drug effects , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology
15.
J Am Chem Soc ; 146(20): 14203-14212, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38733560

ABSTRACT

Nanomedicines often rely on noncovalent self-assembly and encapsulation for drug loading and delivery. However, challenges such as reproducibility issues due to the multicomponent nature, off-target activation caused by premature drug release, and complex pharmacokinetics arising from assembly dissociation have hindered their clinical translation. In this study, we introduce an innovative design concept termed single molecular nanomedicine (SMNM) based on macrocyclic carrier-drug conjugates. Through the covalent linkage of two chemotherapy drugs to a hypoxia-cleavable macrocyclic carrier, azocalix[4]arene, we obtained two self-included complexes to serve as SMNMs. The intramolecular inclusion feature of the SMNMs has not only demonstrated comprehensive shielding and protection for the drugs but also effectively prevented off-target drug leakage, thereby significantly reducing their side effects and enhancing their antitumor therapeutic efficacy. Additionally, the attributes of being a single component and molecularly dispersed confer advantages such as ease of preparation and good reproducibility for SMNMs, which is desirable for clinical applications.


Subject(s)
Antineoplastic Agents , Calixarenes , Drug Carriers , Nanomedicine , Humans , Drug Carriers/chemistry , Nanomedicine/methods , Calixarenes/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Animals , Macrocyclic Compounds/chemistry , Mice , Cell Line, Tumor , Drug Liberation
16.
ACS Nano ; 18(20): 13117-13129, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38727027

ABSTRACT

The complexity, heterogeneity, and drug resistance of diseases necessitate a shift in therapeutic paradigms from monotherapy to combination therapy, which could augment treatment efficiency. Effective treatment of advanced osteoarthritis (OA) requires addressing three key factors contributing to its deterioration: chronic joint inflammation, lubrication dysfunction, and cartilage-tissue degradation. Herein, we present a supramolecular nanomedicine of multifunctionality via molecular recognition and self-assembly. The employed macrocyclic carrier, zwitterion-modified cavitand (CV-2), not only accurately loads various drugs but also functions as a therapeutic agent with lubricating properties for the treatment of OA. Kartogenin (KGN), a drug for articular cartilage regeneration and protection, and flurbiprofen (FP), an anti-inflammatory agent, were coloaded onto CV-2 assembly, forming a supramolecular nanomedicine KGN&FP@CV-2. The three-in-one combination therapy of KGN&FP@CV-2 addresses the three pathological features for treating OA collectively, and thus provides long-term therapeutic benefits for OA through sustained drug release and intrinsic lubrication in vivo. The multifunctional integration of macrocyclic delivery and therapeutics provides a simple, flexible, and universal platform for the synergistic treatment of diseases involving multiple drugs.


Subject(s)
Flurbiprofen , Osteoarthritis , Osteoarthritis/drug therapy , Osteoarthritis/pathology , Animals , Flurbiprofen/chemistry , Flurbiprofen/administration & dosage , Flurbiprofen/pharmacology , Phthalic Acids/chemistry , Phthalic Acids/pharmacology , Drug Delivery Systems , Humans , Drug Carriers/chemistry , Lubrication , Drug Liberation , Mice , Male , Anilides
18.
Phytomedicine ; 130: 155701, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38788392

ABSTRACT

BACKGROUND: Cerebral ischemia-reperfusion injury (CIRI) refers to brain tissue injury caused by the temporary interruption of cerebral blood flow ischemia followed by the restoration of reperfusion, which is the main cause of post-stroke brain injury. A traditional Chinese herbal preparation called Tongqiao Huoxue Decoction (TQHX) has shown promise in reducing CIRI in rats. However, the mechanism of this herbal preparation for CIRI remains unclear. PURPOSE: This study aimed to evaluate the therapeutic effect of TQHX extract on rats with CIRI and to further explore the underlying mechanisms. METHODS: The active ingredients of TQHX extract were quantified by the high-performance liquid chromatography (HPLC) condition. We conducted thorough investigations to assess the effects of TQHX on CIRI and ferroptosis using oxygen-glucose deprivation/reperfusion (OGD/R)-treated PC12 cells as an in vitro model and transient middle cerebral artery occlusion (tMCAO) animals as an in vivo model. The neurological score assessment was performed to evaluate the neuroprotective effects of TQHX extract on tMCAO rats. Using histologic methods to study the extent of cerebral infarction, blood-brain barrier, and rat brain tissue. We examined the impact of TQHX on ferroptosis-related markers of Fe2+, superoxide dismutase (SOD), reactive oxygen species (ROS), and malondialdehyde (MDA) in the brain tissue. In addition, the expression of key proteins and markers of ferroptosis, as well as key factors associated with Acyl-CoA synthetase long-chain family member 4 (ACSL4) were detected by Western blot and quantitative real-time PCR (RT-qPCR). RESULTS: TQHX extract could decrease the Longa score and extent of cerebral infarction of tMCAO rats, which exerted the function of neuroprotection. Additionally, TQHX treatment efficiently decreased levels of MDA and ROS while increasing the expression of SOD and ferroptosis-related proteins including ferritin heavy chain 1 (FTH1) and glutathione peroxidase 4 (GPX4) at the transcription and translation level. Meanwhile, TQHX provided strong protection against oxidative stress and ferritin accumulation by increasing the ubiquitination and degradation of ACSL4. The injection of OE-ACSL4 reversed the effects of TQHX on neuroprotection and ferroptosis inhibition in PC12 cells. The injection of shACSL4 reversely validate the crucial role of ACSL4 in CIRI rat treatment. CONCLUSION: This work shows that TQHX promotes the ubiquitination-mediated degradation of ACSL4, which improves oxidative stress and inhibits the beginning of ferroptosis in cells. TQHX provides a possible path for additional research in CIRI therapies, advancing translational investigations.

19.
EBioMedicine ; 104: 105160, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38788630

ABSTRACT

BACKGROUND: Hearing impairment is a common condition in the elderly. However, a comprehensive understanding of its neural correlates is still lacking. METHODS: We recruited 284 elderly adults who underwent structural MRI, magnetic resonance spectroscopy, audiometry, and cognitive assessments. Individual hearing abilities indexed by pure tone average (PTA) were correlated with multiple structural MRI-derived cortical morphological indices. For regions showing significant correlations, mediation analyses were performed to examine their role in the relationship between hearing ability and cognitive function. Finally, the correlation maps between hearing ability and cortical morphology were linked with publicly available connectomic gradient, transcriptomic, and neurotransmitter maps. FINDINGS: Poorer hearing was related to cortical thickness (CT) reductions in widespread regions and gyrification index (GI) reductions in the right Area 52 and Insular Granular Complex. The GI in the right Area 52 mediated the relationship between hearing ability and executive function. This mediating effect was further modulated by glutamate and N-acetylaspartate levels in the right auditory region. The PTA-CT correlation map followed microstructural connectomic hierarchy, were related to genes involved in certain biological processes (e.g., glutamate metabolic process), cell types (e.g., excitatory neurons and astrocytes), and developmental stages (i.e., childhood to young adulthood), and covaried with dopamine receptor 1, dopamine transporter, and fluorodopa. The PTA-GI correlation map was related to 5-hydroxytryptamine receptor 2a. INTERPRETATION: Poorer hearing is associated with cortical thinning and folding reductions, which may be engaged in the relationship between hearing impairment and cognitive decline in the elderly and have different neurobiological substrates. FUNDING: See the Acknowledgements section.

20.
iScience ; 27(6): 109901, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38799554

ABSTRACT

Non-apoptotic regulated cell death (RCD) of tumor cells profoundly affects tumor progression and plays critical roles in determining response to immune checkpoint inhibitors (ICIs). Prognosis-distinctive HCC subtypes were identified by consensus cluster analysis based on the expressions of 507 non-apoptotic RCD genes obtained from databases and literature. Meanwhile, a set of bioinformatic tools was integrated to analyze the differences of the tumor immune microenvironment infiltration, genetic mutation, copy number variation, and epigenetics alternations within two subtypes. Finally, a non-apoptotic RCDRS signature was constructed and its reliability was evaluated in HCC patients' tissues. The high-RCDRS HCC subgroup showed a significantly lower overall survival and less sensitivity to ICIs compared to low-RCDRS subgroup, but higher sensitivity to cisplatin, paclitaxel, and sorafenib. Overall, we established an RCDRS panel consisting of four non-apoptotic RCD genes, which might be a promising predictor for evaluating HCC prognosis, guiding therapeutic decision-making, and ultimately improving patient outcomes.

SELECTION OF CITATIONS
SEARCH DETAIL
...