Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
2.
FASEB J ; 38(10): e23666, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38780091

ABSTRACT

Genome-wide association studies have identified many single nucleotide polymorphisms (SNPs) associated with erythrocyte traits. However, the functional variants and their working mechanisms remain largely unknown. Here, we reported that the SNP of rs80207740, which was associated with red blood cell (RBC) volume and hemoglobin content across populations, conferred enhancer activity to XPO7 gene via allele-differentially binding to Ikaros family zinc finger 1 (IKZF1). We showed that the region around rs80207740 was an erythroid-specific enhancer using reporter assays, and that the G-allele further enhanced activity. 3D genome evidence showed that the enhancer interacted with the XPO7 promoter, and eQTL analysis suggested that the G-allele upregulated expression of XPO7. We further showed that the rs80207740-G allele facilitated the binding of transcription factor IKZF1 in EMSA and ChIP analyses. Knockdown of IKZF1 and GATA1 resulted in decreased expression of Xpo7 in both human and mouse erythroid cells. Finally, we constructed Xpo7 knockout mouse by CRISPR/Cas9 and observed anemic phenotype with reduced volume and hemoglobin content of RBC, consistent to the effect of rs80207740 on erythrocyte traits. Overall, our study demonstrated that rs80207740 modulated erythroid indices by regulating IKZF1 binding and Xpo7 expression.


Subject(s)
Alleles , Erythrocytes , Genome-Wide Association Study , Ikaros Transcription Factor , Polymorphism, Single Nucleotide , Ikaros Transcription Factor/genetics , Ikaros Transcription Factor/metabolism , Humans , Animals , Mice , Erythrocytes/metabolism , Karyopherins/genetics , Karyopherins/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Promoter Regions, Genetic
3.
J Food Sci ; 89(6): 3540-3553, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38720570

ABSTRACT

Starch and alcohol serve as pivotal indicators in assessing the quality of lees fermentation. In this paper, two hyperspectral imaging (HSI) techniques (visible-near-infrared (Vis-NIR) and NIR) were utilized to acquire separate HSI data, which were then fused and analyzed toforecast the starch and alcohol contents during the fermentation of lees. Five preprocessing methods were first used to preprocess the Vis-NIR, NIR, and the fused Vis-NIR and NIR data, after which partial least squares regression models were established to determine the best preprocessing method. Following, competitive adaptive reweighted sampling, successive projection algorithm, and principal component analysis algorithms were used to extract the characteristic wavelengths to accurately predict the starch and alcohol levels. Finally, support vector machine (SVM)-AdaBoost and XGBoost models were built based on the low-level fusion (LLF) and intermediate-level fusion (ILF) of single Vis-NIR and NIR as well as the fused data. The results showed that the SVM-AdaBoost model built using the LLF data afterpreprocessing by standard normalized variable was most accurate for predicting the starch content, with an R P 2 $\ R_P^2$ of 0.9976 and a root mean square error of prediction (RMSEP) of 0.0992. The XGBoost model built using ILF data was most accurate for predicting the alcohol content, with an R P 2 $R_P^2$ of 0.9969 and an RMSEP of 0.0605. In conclusion, the analysis of fused data from distinct HSI technologies facilitates rapid and precise determination of the starch and alcohol contents in fermented grains.


Subject(s)
Fermentation , Hyperspectral Imaging , Spectroscopy, Near-Infrared , Starch , Support Vector Machine , Starch/analysis , Hyperspectral Imaging/methods , Spectroscopy, Near-Infrared/methods , Edible Grain/chemistry , Fermented Foods/analysis , Alcohols/analysis , Principal Component Analysis , Algorithms , Least-Squares Analysis
4.
J Mol Graph Model ; 130: 108779, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38657395

ABSTRACT

Scorodites are commonly used for arsenic immobilization, and it is also the main component of arsenic bearing tailings. Alkali-activated geopolymers are commonly used to landfill arsenic-bearing minerals. However, there no previous studies have explored the interaction between geopolymer molecules and the surface of scorodite. In this paper, Si(OH)4 as a monomer molecule of geopolymer, the mechanism of adsorption and 'ion exchange' between Si(OH)4 molecule and the surface of scorodite during alkali-activation is studied. Results show that the Fe-terminated scorodite (010) surface has high stability. Si(OH)4 are more easily adsorbed on the hollow site of an Fe-terminated scorodite (010) surface, which is described as chemisorption. Compared with Si(OH)4, NaOH is easier to adsorb on an Fe-terminated scorodite (010) surface. The co-adsorption of NaOH and Si(OH)4 on the Fe-terminated scorodite (010) surface was studied, and also belongs to chemical adsorption. When the hydroxyl binds to the As atom, the adsorbed Si(OH)4 is more likely to undergo an 'ion exchange' reaction with the surface, and the reaction is barrierless. The intermediate As(OH)4 produced by the 'ion exchange' reaction can be deprotonated to form an arsenate molecule, which can occur spontaneously. This work reveals that the interaction mechanism of geopolymer molecules on surface of scorodite.


Subject(s)
Surface Properties , Adsorption , Ion Exchange , Arsenic/chemistry , Sodium Hydroxide/chemistry , Iron/chemistry
5.
J Sci Food Agric ; 104(7): 4145-4156, 2024 May.
Article in English | MEDLINE | ID: mdl-38294322

ABSTRACT

BACKGROUND: Wheat is one of the key ingredients used to make Chinese liquor, and its saccharification power and protein content directly affect the quality of the liquor. In pursuit of a non-destructive assessment of wheat components and the optimization of raw material proportions in liquor, this study introduces a precise predictive model that integrates hyperspectral imaging (HSI) with stacked ensemble learning (SEL). RESULTS: This study extracted hyperspectral information from 14 different varieties of wheat and employed various algorithms for preprocessing. It was observed that multiplicative scatter correction (MSC) emerged as the most effective spectral preprocessing method. The feature wavelengths were extracted from the preprocessed spectral data using three different feature extraction methods. Then, single models (support vector machine (SVM), backpropagation neural network (BPNN), random forest (RF), and gradient boosting tree (XGBoost)) and a SEL model were developed to compare the prediction accuracies of the SEL model and the single models based on the full-band spectral data and the characteristic wavelengths. The findings indicate that the MSC-competitive adaptive reweighted sampling-SEL model demonstrated the highest prediction accuracy, with Rp 2 (test set-determined coefficient) values of 0.9308 and 0.9939 for predicting the saccharification power and protein content and root mean square error of the test set values of 0.0081 U and 0.0116 g kg-1, respectively. CONCLUSION: The predictive model established in this study, integrating HSI and SEL models, accurately detected wheat saccharification power and protein content. This validation underscores the practical potential of the SEL model and holds significant importance for non-destructive component analysis of raw materials used in liquor. © 2024 Society of Chemical Industry.


Subject(s)
Hyperspectral Imaging , Triticum , Algorithms , Neural Networks, Computer , Support Vector Machine , Least-Squares Analysis
6.
Oncogene ; 43(9): 624-635, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38182896

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the leading contributors to cancer-related mortality worldwide. Nop2/Sun domain family member 5 (NSUN5), a conserved RNA 5-methylcytosine methyltransferase, is conventionally recognized as oncogenic. However, its role in HCC development remains unknown. In this study, we observed a remarkable upregulation of NSUN5 expression in both tumor tissues from patients with HCC, establishing a correlation with unfavorable clinical outcomes. NSUN5 knockdown and overexpression significantly inhibited and promoted HCC cell proliferation, respectively. Additionally, employing a combination of methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RIP-seq techniques, we identified zinc finger BED domain-containing protein 3 (ZBED3) as a novel downstream target of NSUN5. Additionally, we found that the overexpression of ZBED3 counteracted the tumor-suppressing effect of NSUN5 knockdown and simultaneously reversed the inhibition of the Wnt/ß-catenin signaling pathway. In summary, we elucidated the oncogenic role of NSUN5 in HCC development and identified the ZBED3/Wnt/ß-catenin signaling pathway as its downstream target. This study provides a novel therapeutic target for further development in HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , 5-Methylcytosine , RNA , beta Catenin/metabolism , Wnt Signaling Pathway/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Methyltransferases/metabolism , Muscle Proteins/metabolism , DNA-Binding Proteins/genetics , Transcription Factors/genetics
7.
Cell Commun Signal ; 22(1): 79, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38291517

ABSTRACT

N1-methyladenosine (m1A) is a post-transcriptionally modified RNA molecule that plays a pivotal role in the regulation of various biological functions and activities. Especially in cancer cell invasion, proliferation and cell cycle regulation. Over recent years, there has been a burgeoning interest in investigating the m1A modification of RNA. Most studies have focused on the regulation of m1A in cancer enrichment areas and different regions. This review provides a comprehensive overview of the methodologies employed for the detection of m1A modification. Furthermore, this review delves into the key players in m1A modification, known as the "writers," "erasers," and "readers." m1A modification is modified by the m1A methyltransferases, or writers, such as TRMT6, TRMT61A, TRMT61B, TRMT10C, NML, and, removed by the demethylases, or erasers, including FTO and ALKBH1, ALKBH3. It is recognized by m1A-binding proteins YTHDF1, TYHDF2, TYHDF3, and TYHDC1, also known as "readers". Additionally, we explore the intricate relationship between m1A modification and its regulators and their implications for the development and progression of specific types of cancer, we discuss how m1A modification can potentially facilitate the discovery of novel approaches for cancer diagnosis, treatment, and prognosis. Our summary of m1A methylated adenosine modification detection methods and regulatory mechanisms in various cancers provides useful insights for cancer diagnosis, treatment, and prognosis. Video Abstract.


Subject(s)
Neoplasms , Humans , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/metabolism , RNA/genetics , RNA/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Methylation , AlkB Homolog 1, Histone H2a Dioxygenase/metabolism , AlkB Homolog 3, Alpha-Ketoglutarate-Dependent Dioxygenase/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism
8.
Cell Commun Signal ; 22(1): 49, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38233930

ABSTRACT

N4-acetylcytidine (ac4C) is a highly conserved chemical modification widely found in eukaryotic and prokaryotic RNA, such as tRNA, rRNA, and mRNA. This modification is significantly associated with various human diseases, especially cancer, and its formation depends on the catalytic activity of N-acetyltransferase 10 (NAT10), the only known protein that produces ac4C. This review discusses the detection techniques and regulatory mechanisms of ac4C and summarizes ac4C correlation with tumor occurrence, development, prognosis, and drug therapy. It also comments on a new biomarker for early tumor diagnosis and prognosis prediction and a new target for tumor therapy. Video Abstract.


Subject(s)
Neoplasms , RNA , Humans , RNA/metabolism , Cytidine/genetics , RNA, Messenger/genetics , Neoplasms/genetics
9.
Anal Methods ; 15(38): 5050-5062, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37740377

ABSTRACT

Obtaining a comprehensive understanding of ore grade information is of significant importance for evaluating the value of ore. However, the real-time detection of multicomponent grade needs more effective online methods. This study proposes a novel approach utilizing hyperspectral imaging (HSI) to evaluate the grade information of nine major ilmenite components by integrating spectral and spatial data. Four multivariate input-output models were developed to mitigate variable interference to predict each component's grade. The results demonstrated that the backpropagation neural network (BPNN) model built from iPLS-VCPA-IRIV feature selection spectral data worked best (RP2 = 0.9935, RMSEP = 0.1364, RPD = 12.8986, and RPIQ = 21.4871, with a computational time of approximately 0.8 s). Furthermore, applying the best optimal combination algorithm for multicomponent grade inversion yielded highly accurate results, in which 97% of the component inversion residuals were less than 1. This investigation affirms that HSI enables rapid and accurate prediction and inversion of the multicomponent grade of ilmenite, thereby presenting a promising alternative to online analysis in the mineral field.

10.
Phys Chem Chem Phys ; 25(33): 22079-22088, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37610424

ABSTRACT

Scorodite (FeAsO4·2H2O) is an ideal material for the fixation of arsenic that has attracted considerable research interest in recent decades. However, the position of the H atom in the scorodite crystal structure, water molecular configuration, surface morphology, and chemical state of the surface atoms have not been reported. In this work, density functional theory (DFT) is used to optimize the scorodite crystal structure, and the atomic bonding is analyzed. At the same time, a surface model is constructed to calculate the configuration and electronic structure of the surface atoms for different coordination groups. The results show that the tetrahedral [AsO4] and octahedral [FeO4(2H2O)] groups in the scorodite crystal structure have good stability(geometry configuration), and the covalent bond strength between the As atom and the bridged oxygen atom (Ob) is greater than that between the Ob atom and the Fe atom. The water molecules in the crystal structure do not seriously deform and ionize. The configuration of the water molecules remains stable through electrostatic interactions (Ow-Fe) and hydrogen bonding (H-Ob). The Fe atoms on the surface of scorodite can coordinate with OH and H2O, while the As atoms can only form a stable coordination with OH. When an Fe atom on the surface coordinates with two H2O atoms, the Fe atom will shrink to the inside of the bulk. With the increase in the hydroxylation number of the Fe atom, the bonding strength between the Fe atom and the Ob atom decreases. Different surface configurations do not affect the stability(geometry configuration) of the [AsO4] structure. In addition, the surface water molecular layer has a very weak effect on the surface coordination configuration. By contrast, in the surface configuration of the (W + OH) structure, the change in the surface atomic layer spacing is the smallest.

11.
Sci Total Environ ; 882: 163600, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37086987

ABSTRACT

MCR-positive Escherichia coli (MCRPEC) have been reported in humans worldwide. The high prevalence of mcr-1 poses clinical and environmental risks due to its diverse genetic mechanisms. Given the vital role of animals and the environment in the spread of antibiotic resistance, a "One Health" perspective should be taken when addressing antimicrobial resistance issues. This study conducted a prospective study in six farms (located in Jiaxing City, Zhejiang province, China) in 2019. MCRPEC strains were screened from samples of different sources. The molecular epidemiological surveys and transmission potential were investigated by whole-genome sequencing and phylogenetic analysis. MCRPEC were detected in different farms with various sources. Sequence type complex 10 was dominant and distributed widely in multiple sources. Core-genome multilocus sequence type (cgMLST) analysis indicated that clonal transmission could occur within and between farms. In addition, mcr-1 genes with different locations showed different transmission tendencies. The study indicated that interspecies and cross-regional transmission of MCRPEC could occur between different sectors in farms. Further surveillance and research of non-clinical MCRPEC strains are necessary to reduce the threat of MCRPEC.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Humans , Animals , Colistin , Escherichia coli , Anti-Bacterial Agents/pharmacology , Escherichia coli Proteins/genetics , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Phylogeny , Prospective Studies , Drug Resistance, Bacterial/genetics , Genomics , Microbial Sensitivity Tests , Plasmids
12.
Phys Chem Chem Phys ; 25(12): 8826-8835, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36916314

ABSTRACT

The analysis of the surface chemical behavior of pyrite is highly crucial in the fields of environmental conservation, metal extraction, and flotation separation. In this paper, the mechanism of atomic reconstruction on the pyrite surface and the adsorption behavior of O2 on a reconstructed surface are calculated by density functional theory (DFT). Different reconstruction surfaces were constructed by deleting S and Fe atoms on the (100) surface of pyrite. In addition, the geometric configuration, formation energy, binding energy, cohesion energy, and surface electronic properties of the reconstruction surface were calculated. The adsorption energies and geometric configurations of O2 on different reconstructed surfaces were also determined. The results show that under Fe-poor conditions, the charge of Fe atoms increases, and S atoms form Sn on the reconstructed surface. The binding energy between the Sn and the substrate (ideal surface) is lower, which is similar to the Sn adsorption on the substrate surface with the Fe atom as the site. Sn has high cohesive energy and is resistant to being attacked by oxidants, which leads to structural collapse, and a low affinity for O2. Under S-poor conditions, the -[Fe-S]n- plane structure formed on the reconstructed surface. The -[Fe-S]n- structure stably bonds to the substrate by an Fe-S bond, and exhibits strong binding energy. However, the -[Fe-S]n- structure has low cohesive energy and exhibits thermodynamic instability. In contrast, O2 shows a strong affinity for the -[Fe-S]n- structure, indicating that the deficiency of the S atom promotes the surface oxidation reaction. The mechanism of atomic reconstruction on the surface of pyrite is of utmost importance for understanding its surface chemical behavior.

13.
Pest Manag Sci ; 79(1): 105-113, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36088646

ABSTRACT

BACKGROUND: Plants respond to attackers by triggering phytohormones signaling associated metabolites, including herbivore-induced plant volatiles (HIPVs). HIPVs can indirectly act against herbivory by recruitment of natural enemies and priming of neighboring plants. Ostrinia furnacalis and Mythimna separata are important insect herbivores of maize plants that have a devastating influence on yield. However, little is known about how maize temporally reconfigures its defense systems against these herbivores and variation of neighboring plant resistance. RESULTS: This study investigated the effects of HIPVs on the behavior of the dominant predatory beetle Harmonia axyridis and priming in neighboring maize defense against O. furnacalis and M. separata over time. The results showed that maize damaged by either O. furnacalis or M. separata enhanced the release of volatiles including terpenes, aldehydes, alkanes and an ester, which elicited an increased attractive response to H. axyridis after 3 and 12 h, respectively. O. furnacalis damage resulted in accumulations of leaf jasmonic acid (JA) and salicylic acid in maize after 6 and 3 h, respectively, while M. separata damage only raised the JA level after 3 h. Furthermore, HIPVs were able to prime neighboring plants through the accumulation of JA after 24 h. Both larvae showed a significant decrease in weight accumulation after 48 h of feeding on the third leaves of the primed plant. CONCLUSION: Taken together, the findings provide a dynamic overview of how attacked maize reconfigures its volatiles and phytohormones to defend against herbivores, as well as priming of neighboring plants against oncoming attacks. © 2022 Society of Chemical Industry.


Subject(s)
Zea mays
14.
Virulence ; 14(1): 233-245, 2023 12.
Article in English | MEDLINE | ID: mdl-36529894

ABSTRACT

Emerging mobile colistin resistance (mcr) genes pose a significant threat to public health for colistin was used as the last resort to treat multidrug-resistant (MDR) pathogenic bacterial infections. Hypervirulent Klebsiella pneumoniae (hvKP) is a clinically significant pathogen resulting in highly invasive infections, often complicated by devastating dissemination. Worryingly, the untreatable and severe infections caused by mcr-harbouring hvKP leave the selection of antibiotics for clinical anti-infective treatment in a dilemma. Herein, we screened 3,461 isolates from a tertiary teaching hospital from November 2018 to March 2021, and an mcr-8.2-harbouring hvKP FAHZZU2591 with a conjugative plasmid was identified from paediatric sepsis. This is the first report of MCR-8-producing hvKP from paediatric sepsis to our best knowledge. The susceptibility, genetic features, and plasmid profiles of the isolate were investigated. Further, we assessed the virulence potential of FAHZZU2591 and verified its pathogenicity and invasive capacity using a mouse model. The phylogenetic analysis of mcr-8-bearing K. pneumoniae revealed that China is the predominant reservoir of the mcr-8 gene, and the clinic is the primary source. Our work highlights the risk for the spread of mcr-positive hvKP in clinical, especially in paediatric sepsis, and the persistent surveillance of colistin-resistance hvKP is urgent.


Subject(s)
Klebsiella Infections , Sepsis , Humans , Colistin/pharmacology , Klebsiella pneumoniae , Phylogeny , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Plasmids/genetics , Genomics , Klebsiella Infections/microbiology
15.
J Sci Food Agric ; 103(8): 3970-3983, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36397181

ABSTRACT

BACKGROUND: The purity of sorghum varieties is an important indicator of the quality of raw materials used in the distillation of liquors. Different varieties of sorghum may be mixed during the acquisition process, which will affect the flavor and quality of liquor. To facilitate the rapid identification of sorghum varieties, this study proposes a sorghum variety identification model using hyperspectral imaging (HSI) technology combined with convolutional neural network (AlexNet). RESULTS: First, the watershed algorithm, which was modified with the extended-maxim transform, was used to segment the hyperspectral images of a single sorghum grain. The isolated forest algorithm was used to eliminate abnormal spectral data from the complete spectral data. Secondly, the AlexNet model of sorghum variety identification was established based on the two-dimensional gray image data of sorghum grain in group 1. The effects of different preprocessing methods and different convolution kernel sizes on the performance of the AlexNet model were discussed. The eigenvalues of the last layer of the AlexNet model were visualized using the t-distributed random neighborhood embedding method, which is used to evaluate the separability of features extracted by the AlexNet model. The performance differences between the optimal AlexNet model and traditional machine learning models for sorghum variety identification were compared. Finally, the varieties of sorghum grains in groups 2 and 3 were identified based on the optimal AlexNet model, and the average accuracy values of the test set reached 95.62% and 95.91% respectively. CONCLUSION: The results in this study demonstrated that HSI combined with the AlexNet model could provide a feasible technical approach for the detection of sorghum varieties. © 2022 Society of Chemical Industry.


Subject(s)
Sorghum , Hyperspectral Imaging , Neural Networks, Computer , Algorithms , Edible Grain
16.
BMC Infect Dis ; 22(1): 835, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36369020

ABSTRACT

OBJECTIVE: To study the risk factors and prediction models of multidrug resistance in patients with tuberculosis and diabetes and those with a history of tuberculosis treatment. METHODS: A total of 256 tuberculosis patients with diabetes who were registered in Luoyang city, Henan Province, from January 2018 to December 2021. Logistic regression analysis was performed to analyse the risk factors for multidrug resistance. ROC curves were used to analyse the predictive model for multidrug resistance. RESULTS: Age < 65 years old, HbA1c, and a history of tuberculosis treatment were independent risk factors for multidrug resistance in patients with tuberculosis and diabetes (P < 0.05). The area under the ROC curve of predictive model for MDR was 0.878 (95% CI (0.824, 0.932)). Age < 65 years old and HbA1c were independent risk factors for MDR in patients with TB and diabetes with a history of TB treatment. The area under the ROC curve of predictive model for MDR was 0.920 [95% CI (0.831, 0.999)]. CONCLUSION: The predictive model had certain prediction value for the risk of multidrug resistance in patients with tuberculosis and diabetes.


Subject(s)
Diabetes Mellitus , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Humans , Aged , Tuberculosis, Multidrug-Resistant/complications , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/epidemiology , Glycated Hemoglobin , Tuberculosis/complications , Tuberculosis/drug therapy , Tuberculosis/epidemiology , Risk Factors , Drug Resistance, Multiple , Diabetes Mellitus/drug therapy , Diabetes Mellitus/epidemiology , Antitubercular Agents/therapeutic use , Antitubercular Agents/pharmacology
17.
Infect Drug Resist ; 15: 6731-6737, 2022.
Article in English | MEDLINE | ID: mdl-36444214

ABSTRACT

Purpose: Beta-lactamase-producing Klebsiella pneumoniae is common in the clinic, but research associated with the co-existence of KPC-2, LAP-2, and CTX-M-65 in K. pneumoniae is still rare. In this study, the phenotypic and genetic characteristics of a multidrug-resistant K. pneumoniae strain SJ25 co-harboring bla KPC-2, bla LAP-2, and bla CTX-M-65 with rare ST1469 were investigated. Methods and Results: Antimicrobial susceptibility testing revealed that strain SJ25 was resistant to various common antibiotics, except ciprofloxacin, fosfomycin, colistin, and tigecycline. Whole-genome analysis revealed that strain SJ25 carries a variety of antimicrobial resistance genes and virulence determinants. Plasmid analysis confirmed that the bla KPC-2 and bla CTX-M-65 genes were located on an ~136 kb transferrable IncFII/IncR plasmid and that bla LAP-2 was located on an untypeable plasmid. Conclusion: Our findings emphasized the need for continuous surveillance of ß-lactamase-bearing K. pneumoniae in the clinic to control potential dissemination and outbreak.

18.
Front Microbiol ; 13: 1020500, 2022.
Article in English | MEDLINE | ID: mdl-36312943

ABSTRACT

The worldwide spread of carbapenem-resistant Enterobacteriaceae (CRE) has led to a major challenge to human health. In this case, colistin is often used to treat the infection caused by CRE. However, the coexistence of genes conferring resistance to carbapenem and colistin is of great concern. In this work, we reported the coexistence of bla OXA-181, bla CTX-M-55, and mcr-8 in an ST273 Klebsiella pneumoniae isolate for the first time. The species identification was performed using MALDI-TOF MS, and the presence of various antimicrobial resistance genes (ARGs) and virulence genes were detected by PCR and whole-genome sequencing. Antimicrobial susceptibility testing showed that K. pneumoniae 5589 was resistant to aztreonam, imipenem, meropenem, ceftriaxone, cefotaxime, ceftazidime, levofloxacin, ciprofloxacin, gentamicin, piperacillin-tazobactam, cefepime, and polymyxin B, but sensitive to amikacin. S1-pulsed-field gel electrophoresis (PFGE) and Southern blotting revealed the mcr-8 gene was carried on a ~ 138 kb plasmid with a conserved structure (IS903B-ymoA-inhA-mcr-8-copR-baeS-dgkA-ampC). In addition, bla OXA-181 was found on another ~51 kb plasmid with a composite transposon flanked by insertion sequence IS26. The in vitro conjugation experiments and plasmid sequence probe indicated that the plasmid p5589-OXA-181 and the p5589-mcr-8 were conjugative, which may contribute to the propagation of ARGs. Relevant detection and investigation measures should be taken to control the prevalence of pathogens coharboring bla OXA-181, bla CTX-M-55 and mcr-8.

19.
ACS Appl Mater Interfaces ; 14(36): 41348-41360, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36059205

ABSTRACT

All-printed flexible micro-supercapacitors (MSCs) based on two-dimensional (2D) nanomaterials with in-plane interdigital configurations are regarded as promising miniaturized power source units, but they chronically suffer from self-aggregation and inadequate matching of electrode materials, thus resulting in inefficient electrolyte ions intercalation. Herein, an innovative multicomponent interlaced architecture essentially consisting of 2-amino-8-naphthol 6-sulfonic acid (ANS)-anchored pristine graphene and highly conductive multiwalled carbon nanotubes is reported. The assembled and optimized Gr@ANS electrodes offer sufficient absorption/desorption and redox-active sites, delivering a high areal capacitance of 33.7 mF/cm2 for screen-printed MSCs. Particularly, the well-modified Gr@ANS/CNTs-interlaced complex structure effectively prevents the usual restacking of the delaminated Gr@ANS nanosheets and maximizes ion accessibility in electrodes. Ascribed to the optimized electron-transferring kinetics, the achieved Gr@ANS/CNTs MSCs exhibit excellent capacitance (40.2 mF/cm2 and 18.8 F/cm3), simultaneously significantly increasing the rate capability of Gr@ANS MSCs (from 3.9 to 60.0%). Arising from the multicomponent synergism, the all-solid-state MSCs exhibit outstanding bending stability and cycling performance (73.8% after 10 000 charge/discharge cycles). The new charge reservoir engineering evidenced in graphene-based micro-supercapacitors would serve as a stepping stone toward the scalable manufacture of hybrid energy storage micro-devices.

20.
Front Cell Infect Microbiol ; 12: 879409, 2022.
Article in English | MEDLINE | ID: mdl-35601097

ABSTRACT

Mobile colistin resistance (mcr) genes represent an emerging threat to public health. Reports on the prevalence, antimicrobial profiles, and clonality of MCR-9-producing Enterobacter cloacae complex (ECC) isolates on a national scale in China are limited. We screened 3,373 samples from humans, animals, and the environment and identified eleven MCR-9-positive ECC isolates. We further investigated their susceptibility, epidemiology, plasmid profiles, genetic features, and virulence potential. Ten strains were isolated from severe bloodstream infection cases, especially three of them were recovered from neonatal sepsis. Enterobacter hormaechei was the most predominant species among the MCR-9-producing ECC population. Moreover, the co-existence of MCR-9, CTX-M, and SHV-12 encoding genes in MCR-9-positive isolates was globally observed. Notably, mcr-9 was mainly carried by IncHI2 plasmids, and we found a novel ~187 kb IncFII plasmid harboring mcr-9, with low similarity with known plasmids. In summary, our study presented genomic insights into genetic characteristics of MCR-9-producing ECC isolates retrieved from human, animal, and environment samples with one health perspective. This study is the first to reveal NDM-1- and MCR-9-co-producing ECC from neonatal sepsis in China. Our data highlights the risk for the hidden spread of the mcr-9 colistin resistance gene.


Subject(s)
Colistin , Neonatal Sepsis , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , China/epidemiology , Colistin/pharmacology , Enterobacter , Microbial Sensitivity Tests , Neonatal Sepsis/epidemiology , Plasmids/genetics , beta-Lactamases
SELECTION OF CITATIONS
SEARCH DETAIL
...