Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 21(2): 1323-1330, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33183479

ABSTRACT

With the development of nanometer semiconductor laser technology, due to the wide range of photobiological regulation and non-invasive advantages, it is widely used in clinical research, including reducing pain, accelerating wound healing, nerve injury repair and regeneration. Increase tissue blood flow, improve anxiety and depression, and treat Parkinson's and retinal diseases. However, in many studies, the role of photobiological regulation is still controversial. There are two main problems, one is that the mechanism of photo biological regulation is not fully understood, and the other is that the specific parameters are not uniform in different treatments, such as wavelength density, power density, pulse, treatment timing, and number of treatments. In this paper, through the second question, the parameters of low-energy near-infrared light (810 nm semiconductor laser) in the treatment of fundus diseases are the main research objects. Based on understanding the parameters of low-energy lasers, cyan blue is irradiated with different energy near-infrared light. Data analysis of the actual energy obtained after the retina of the rabbit and observation and research on the cell morphology of each layer of the retina, to obtain relatively safe treatment parameters for the retina, provide theoretical data for near-infrared light in the treatment of clinical fundus disease, and make it safer to use in clinical treatment.


Subject(s)
Antihypertensive Agents , Lasers, Semiconductor , Animals , Infrared Rays , Lasers, Semiconductor/therapeutic use , Rabbits , Technology
2.
Cancer Manag Res ; 12: 8287-8302, 2020.
Article in English | MEDLINE | ID: mdl-32982424

ABSTRACT

BACKGROUND: Osteosarcoma (OS) is the most common bone tumor. Many studies have reported that circular RNAs (circRNAs) play an important role in the development of a variety of human cancers. However, the underlying mechanism of circ_0001721 in regulating osteosarcoma progression remains unknown. MATERIALS AND METHODS: Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the levels of circ_0001721, miR-372-3p, and mitogen-activated protein kinase 7 (MAPK7) in osteosarcoma tissues and cells. Besides, glycolysis was investigated by glucose consumption, lactate production and hexokinase II (HK2) protein level. Cell proliferation and apoptosis were determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and flow cytometry, separately. Cell migration and invasion were determined by transwell assay. Moreover, the protein levels of HK2 and epithelial-to-mesenchymal transition (EMT) markers were determined by Western blot analysis. The relationship between miR-372-3p and circ_0001721 or MAPK7 was predicated by starbase v3.0 and confirmed by dual-luciferase reporter assay or RNA binding protein immunoprecipitation (RIP) assay. Murine xenograft model was established to investigate the role of circ_0001721 in vivo. RESULTS: The levels of circ_0001721 and MAPK7 were upregulated in osteosarcoma tissues and cells, while miR-372-3p was downregulated. Knockdown of circ_0001721 inhibited glycolysis, cell proliferation, cell migration, invasion and epithelial-to-mesenchymal transition (EMT), and promoted apoptosis. Circ_0001721 was validated as a sponge of miR-372-3p and mediated glycolysis, cell proliferation, apoptosis, migration, invasion, and EMT of osteosarcoma cells through miR-372-3p. MAPK7 was a target of miR-372-3p and overexpression of MAPK7 attenuated anti-cancer role of miR-372-3p in OS cells. Further studies revealed that circ_0001721 regulates MAPK7 expression via sponging miR-372-3-p. Finally, knockdown of circ_0001721 inhibited tumor progression in vivo. CONCLUSION: Circ_0001721 promoted osteosarcoma development through the miR-372-3p/MAPK7 axis.

SELECTION OF CITATIONS
SEARCH DETAIL
...