Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Total Environ ; 828: 154443, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35278549

ABSTRACT

Although toxic effects of zinc (Zn) have been well established in the different developmental stages in fish, long-lasting effects of Zn exposure during embryonic development have not been explored. Exposure to an environmentally relevant Zn concentration of 10 µM (650 µg/L) during the first five days after fertilization did not affect survival, body weight, malformations or overall hatching success of F0 and F1 larvae. Zn exposure did, however, result in delayed hatching in both the F0 and F1 generations and caused significant changes in homeostasis of Zn and selenium (Se) in F0 and F1 fish. This was especially pronounced when F1 embryos from Zn-exposed parents were treated with 30 µM (2000 µg/L) Zn. In the F0 generation, skewed sex ratio towards males and changes in homeostasis of Zn, Se and manganese (Mn) in the brain, gill, liver and gonad of adult fish were also observed. These changes were associated with altered expression of Zn- and Mn-regulatory genes and sex differentiation genes in F0 and F1 fish. The present study suggests that fish may carry memory from embryo-larval Zn exposure into adulthood and further to the next generation. The present study shows that ecotoxicological risk of an exposure to Zn during embryo-larval development may persist long after recovery and may also manifest in the F1 generation.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Embryonic Development , Gonads , Larva , Male , Water Pollutants, Chemical/toxicity , Zinc/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...