Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Front Immunol ; 15: 1335602, 2024.
Article in English | MEDLINE | ID: mdl-38426108

ABSTRACT

Infection by an emerging bacterial pathogen Rahnella aquatilis caused enteritis and septicemia in fish. However, the molecular pathogenesis of enteritis induced by R. aquatilis infection and its interacting mechanism of the intestinal microflora associated with microRNA (miRNA) immune regulation in crucian carp Carassius auratus are still unclear. In this study, C. auratus intraperitoneally injected with R. aquatilis KCL-5 was used as an experimental animal model, and the intestinal pathological changes, microflora, and differentially expressed miRNAs (DEMs) were investigated by multi-omics analysis. The significant changes in histopathological features, apoptotic cells, and enzyme activities (e.g., lysozyme (LYS), alkaline phosphatase (AKP), alanine aminotransferase (ALT), aspartate transaminase (AST), and glutathione peroxidase (GSH-Px)) in the intestine were examined after infection. Diversity and composition analysis of the intestinal microflora clearly demonstrated four dominant bacteria: Proteobacteria, Fusobacteria, Bacteroidetes, and Firmicutes. A total of 87 DEMs were significantly screened, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the potential target genes were mainly involved in the regulation of lipid, glutathione, cytosine, and purine metabolism, which participated in the local immune response through the intestinal immune network for IgA production, lysosome, and Toll-like receptor (TLR) pathways. Moreover, the expression levels of 11 target genes (e.g., TLR3, MyD88, NF-κB, TGF-ß, TNF-α, MHC II, IL-22, LysC, F2, F5, and C3) related to inflammation and immunity were verified by qRT-PCR detection. The correlation analysis indicated that the abundance of intestinal Firmicutes and Proteobacteria was significantly associated with the high local expression of miR-203/NF-κB, miR-129/TNF-α, and miR-205/TGF-ß. These findings will help to elucidate the molecular regulation mechanism of the intestinal microflora, inflammation, and immune response-mediated miRNA-target gene axis in cyprinid fish.


Subject(s)
Carps , Enteritis , Gastrointestinal Microbiome , MicroRNAs , Rahnella , Animals , Goldfish/genetics , Carps/genetics , Rahnella/genetics , NF-kappa B , Multiomics , Tumor Necrosis Factor-alpha , Inflammation , Transforming Growth Factor beta , MicroRNAs/genetics
2.
Fish Shellfish Immunol ; 140: 108970, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37488042

ABSTRACT

In teleost fish, kidney is an important immune and hematopoietic organ with multiple physiological functions. However, the immune cells and cellular markers of kidney require further elucidation in crucian carp (C. auratus). Here we report on the single-cell transcriptional landscape in posterior kidney, immunohistochemical and phagocytic features of C. auratus with R. aquatilis infection. The results showed that a total of 18 cell populations were identified for the main immune cells such as monocytes/macrophages (Mo/Mφ), dendritic cells (DCs), B cells, T cells, granulocytes and hematopoietic progenitor cells (HPCs). Pseudo-time trajectory analysis was reconstructed for the immune cells using Monocle2 to obtain additional insights into their developmental lineage relationships. In the detected tissues (liver, spleen, kidney, intestine, skin, and gills) of infected fish exhibited positive immunohistochemical staining with prepared for antibody to R. aquatilis. Apoptotic cells were fluorescently demonstrated by TUNEL assay, and bacterial phagocytic activity were observed for neutrophils and Mo/Mφ cells, respectively. Moreover, a similar up-ward/down-ward expression trend of the selected immune and inflammatory genes was found in the kidney against R. aquatilis infection, which were significantly involved in TLR/NLR, ECM adhesion, phago-lysosome, apoptosis, complement and coagulation pathways. To our knowledge, this is the first report on the detailed characterization of immune cells and host-R. aquatilis interaction, which will contribute to understanding on the biology of renal immune cells and repertoire of potential markers in cyprinid fish species.


Subject(s)
Carps , Fish Diseases , Rahnella , Animals , Goldfish/genetics , Carps/genetics , Transcriptome , Rahnella/genetics , Phagocytes
3.
Fish Shellfish Immunol ; 135: 108651, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36863497

ABSTRACT

Focal adhesion (FA) plays a key role in cell adhesion, migration and antibacterial immune, but it remained unclear in fish. In this study, half-smooth tongue sole Cynoglossus semilaevis were infected with Vibrio vulnificus, and then immune-related protein in the skin, especially for FA signaling pathway were screened and identified by iTRAQ analysis. Results showed that the differentially expressed proteins (DEPs) in skin immune response (eg., ITGA6, FN, COCH, AMBP, COL6A1, COL6A3, COL6A6, LAMB1, LAMC1, FLMNA) were firstly found in FA signaling pathway. Furthermore, the validation analysis of FA-related genes were basically consistent with the iTRAQ data at 36 hpi (r = 0.678, p < 0.01), and their spatio-temporal expressions were confirmed by qPCR analysis. The molecular characterization of vinculin of C. semilaevis was described. This study will provide a new perspective for understanding the molecular mechanism of FA signaling pathway in the skin immune response in marine fish.


Subject(s)
Fish Diseases , Flatfishes , Flounder , Vibrio Infections , Vibrio , Animals , Vibrio/physiology , Cell Adhesion , Focal Adhesions/metabolism , Flounder/metabolism , Immunity , Fish Proteins
4.
Front Immunol ; 14: 1098455, 2023.
Article in English | MEDLINE | ID: mdl-36820086

ABSTRACT

The gill of fish is an important immune organ for pathogen defense, but its microRNA (miRNA) expression and regulatory mechanism remain unclear. In this study, we report on the histopathological and immunohistochemical features of the gills of the crucian carp Carassius auratus challenged with Aeromonas hydrophila. Small RNA libraries of the gills were constructed and sequenced on the Illumina HiSeq 2000 platform. A total of 1,165 differentially expressed miRNAs (DEMs) were identified in gills, of which 539 known and 7 unknown DEMs were significantly screened (p < 0.05). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the potential target genes/proteins were primarily involved in 33 immune-related pathways, in which the inflammatory responses were focused on the Toll-like receptor (TLR), mitogen-activated protein kinase (MAPK), and nuclear factor kappa B (NF-κB) signaling pathways. Moreover, the expression levels of 14 key miRNAs (e.g., miR-10, miR-17, miR-26a, miR-144, miR-145, and miR-146a) and their target genes (e.g., TNFα, TLR4, NF-κB, TAB1, PI3K, and IRAK1) were verified. In addition, the protein levels based on isobaric tags for relative and absolute quantification (iTRAQ) were significantly associated with the results of the quantitative real-time PCR (qRT-PCR) analysis (p < 0.01). miR-17/pre-miR-17 were identified in the regulation expression of the NF-κB target gene, and the phylogenetic tree analysis showed that the pre-miR-17 of C. auratus with the closest similarity to the zebrafish Danio rerio is highly conserved in teleosts. This is the first report of the multi-omics analysis of the miRNAs and proteins in the gills of C. auratus infected with A. hydrophila, thus enriching knowledge on the regulation mechanism of the local immune response in Cyprinidae fish.


Subject(s)
Goldfish , MicroRNAs , Animals , Aeromonas hydrophila , Gills , Zebrafish/genetics , Multiomics , NF-kappa B/genetics , Phylogeny , Immunity, Innate/genetics , MicroRNAs/genetics
5.
Fish Shellfish Immunol Rep ; 4: 100077, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36589261

ABSTRACT

As one of the mucosal barriers, fish gills represent the first line of defense against pathogen infection. However, the exact mechanism of gill mucosal immune response to bacterial infection still needs further investigation in fish. Here, to investigate pathological changes and molecular mechanisms of the mucosal immune response in the gills of crucian carp (Carassius auratus) challenged by Aeromonas hydrophila, the transcriptomics and proteomics were performed by using multi-omics analyses of RNA-seq coupled with iTRAQ techniques. The results demonstrated gill immune response were mostly related to the activation of complement and coagulation cascades, antigen processing and presentation, phagosome, NOD-like receptor (NLR) and nuclear factor κB (NFκB) signaling pathway. Selected 21 immune-related DEGs (ie., Clam, nfyal, snrpf, acin1b, psme, sf3b5, rbm8a, rbm25, prpf18, g3bp2, snrpd3l, tecrem-2, cfl-A, C7, lysC, ddx5, hsp90, α-2M, C9, C3 and slc4a1a) were verified for their immune roles in the A. hydrophila infection via using qRT-PCR assay. Meanwhile, some complement (C3, C7, C9, CFD, DF and FH) and antigen presenting (HSP90, MHC Ⅱ, CALR, CANX and PSME) proteins were significantly participated in the process of defense against infections in gill tissues, and protein-protein interaction (PPI) network displayed the immune signaling pathways and interactions among these DEPs. The correlation analysis indicated that the iTRAQ and qRT-PCR results was significantly correlated (Pearson's correlation coefficient = 0.70, p < 0.01). To our knowledge, the transcriptomics and proteomics of gills firstly identified by multi-omics analyses contribute to understanding on the molecular mechanisms of local mucosal immunity in cyprinid species.

6.
Fish Shellfish Immunol ; 127: 866-875, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35850458

ABSTRACT

Fish skin is an essential protective barrier and functions as the first line of immune defense against pathogens. However, the molecular mechanism at the proteome-level remains unclear in the skin of fish. In this study, the comparative proteomics of skin immune responses of crucian carp Carassius auratus infected with Aeromonas hydrophila was investigated by isobaric tags for relative and absolute quantification (iTRAQ), two-dimensional gel electrophoresis combined with mass spectrometry (2-DE/MS) as well as high-throughput transcriptome (RNA-seq) techniques. A total of 241 and 178 differentially expressed proteins (DEPs) at 6 and 12 h post-infection (hpi) were respectively identified by iTRAQ, and key-DEPs were furtherly verified with 2-DE/MS analysis. GO and KEGG analysis showed that these DEPs were mostly related to metabolism, regulation of the cytoskeleton, stress and immune responses. Co-association results of proteome and transcriptome revealed the lysozyme (LYZ), complement C3, DnaJ (Hsp40) homolog subfamily C member 8 (DNAJC8) and allograft inflammatory factor 1-like (AIF1L) play important roles in skin immune responses of crucian carp. The significantly up-regulated expression of detected immune-related genes (c3, mapk3, f5, nlr, hsp90, itgb2, fnl, flnca, p47, mhc and pros1) were validated by qRT-PCR analysis. To our knowledge, this is first report on multi-omics analysis of the differential proteomics for the skin immune response of C. auratus against A.hydrophila infection, which contribute to the understanding the mechanisms of skin mucosal immunity in cyprinid fish.


Subject(s)
Carps , Fish Diseases , Gram-Negative Bacterial Infections , Aeromonas hydrophila/physiology , Animals , Carps/genetics , Carps/metabolism , Fish Proteins/chemistry , Goldfish , Gram-Negative Bacterial Infections/veterinary , Immunity, Innate/genetics , Proteome
7.
Dis Aquat Organ ; 149: 71-76, 2022 May 24.
Article in English | MEDLINE | ID: mdl-35608511

ABSTRACT

A dominant bacterium, ZYL-12, isolated from the liver of a diseased orange-spotted grouper Epinephelus coioides, was identified as Vibrio sinaloensis, based on phenotypic and molecular analysis. The median lethal dosage of ZYL-12 was calculated as 1.6 × 105 CFU g-1 fish weight. The infection experiment indicated that ZYL-12 caused noticeable histological lesions to the liver, kidney and spleen of the fish. Growth characteristics showed that ZYL-12 possessed strong environmental adaptability. This note is the first report about the pathogenicity of V. sinaloensis isolated from diseased fish.


Subject(s)
Bass , Fish Diseases , Vibrio Infections , Vibrio , Animals , Cloning, Molecular , Fish Diseases/microbiology , Vibrio Infections/veterinary
8.
J Aquat Anim Health ; 33(4): 243-251, 2021 12.
Article in English | MEDLINE | ID: mdl-34327768

ABSTRACT

Pseudomonas alcaligenes infection is rare in aquaculture. In this study, we provide the first report on the characterization of P. alcaligenes from koi (a variant of Common Carp Cyprinus carpio) in China. A gram-negative bacterium was isolated from the diseased koi and was named KCP-516. Morphological and biochemical tests as well as phylogenetic tree analyses derived from 16S ribosomal RNA, gyrase subunit A, and gyrase subunit B gene sequencing all strongly indicated that the isolate KCP-516 was P. alcaligenes. In liquid medium, the optimal growth conditions were 25°C, 2.5% NaCl, and pH 8. The pathogenicity of the isolate was demonstrated in koi, with 7.0 × 104 CFU/g fish weight identified as the dose lethal to 50% of test fish. The results will provide a scientific reference for the diagnosis and treatment of P. alcaligenes infection.


Subject(s)
Carps , Fish Diseases , Pseudomonas alcaligenes , Animals , Aquaculture , Fish Diseases/epidemiology , Fish Diseases/microbiology , Phylogeny
9.
Microb Genom ; 7(5)2021 05.
Article in English | MEDLINE | ID: mdl-33952389

ABSTRACT

The virulence of Vibrio parahaemolyticus is variable depending on its virulence determinants. A V. parahaemolyticus strain, in which the virulence is governed by the pirA and pirB genes, can cause acute hepatopancreatic necrosis disease (AHPND) in shrimps. Some V. parahaemolyticus that are non-AHPND strains also cause shrimp diseases and result in huge economic losses, while their pathogenicity and pathogenesis remain unclear. In this study, a non-AHPND V. parahaemolyticus, TJA114, was isolated from diseased Penaeus vannamei associated with a high mortality. To understand its virulence and adaptation to the external environment, whole-genome sequencing of this isolate was conducted, and its phenotypic profiles including pathogenicity, growth characteristics and nutritional requirements were investigated. Shrimps following artificial infection with this isolate presented similar clinical symptoms to the naturally diseased ones and generated obvious pathological lesions. The growth characteristics indicated that the isolate TJA114 could grow well under different salinity (10-55 p.p.t.), temperature (23-37 °C) and pH (6-10) conditions. Phenotype MicroArray results showed that this isolate could utilize a variety of carbon sources, amino acids and a range of substrates to help itself adapt to the high hyperosmotic and alkaline environments. Antimicrobial-susceptibility test showed that it was a multidrug-resistant bacterium. The whole-genomic analysis showed that this V. parahaemolyticus possessed many important functional genes associated with multidrug resistance, stress response, adhesions, haemolysis, putative secreted proteases, dedicated protein secretion systems and a variety of nutritional metabolic mechanisms. These annotated functional genes were confirmed by the phenotypic profiles. The results in this study indicated that this V. parahaemolyticus isolate possesses a high pathogenicity and strong environmental adaptability.


Subject(s)
Animal Diseases/microbiology , Genomics , Penaeidae/microbiology , Phenotype , Vibrio parahaemolyticus/genetics , Adaptation, Physiological , Animals , Bacterial Proteins/genetics , DNA Gyrase/genetics , Microbial Sensitivity Tests , Penaeidae/genetics , Virulence , Virulence Factors/genetics , Whole Genome Sequencing
10.
Microb Pathog ; 149: 104551, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33011362

ABSTRACT

Carp edema virus disease (CEVD) has resulted in great economic losses in koi (Cyprinus carpio koi) and common carp (Cyprinus carpio carpio) populations in the world. In this study, the diseased koi were diagnosed as CEV infection based on 5' untranslated region (5'UTR) and 4a protein genes by the conventional PCR, nested PCR and quantitative PCR (qPCR) analyses. Phylogenetic tree analysis showed that the TJ201708 strain was classified into the genogroup IIa. Furthermore, qPCR of 5'UTR gene revealed that the lowest detection limit was 4.0 fg/µL. The pathogenicity of CEV for koi was demonstrated in the infection experiments. Histopathological examination revealed the petechial hemorrhages of liver and spleen, vacuolization of lamina propria of intestine and swelling and necrosis of respiratory epithelial cells of gills. To our knowledge, this is the first report the qPCR of 5'UTR gene in the detection of carp edema virus.


Subject(s)
Carps , Fish Diseases , Poxviridae Infections , Animals , China , Edema/veterinary , Phylogeny
11.
Antonie Van Leeuwenhoek ; 113(11): 1633-1662, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32951105

ABSTRACT

Providencia rettgeri infection has occurred occasionally in aquaculture, but is rare in turtles. Here, a pathogenic P. rettgeri strain G0519 was isolated from a diseased slider turtle (Trachemys scripta) in China, and qPCR assay was established for the RTX toxin (rtxD) gene. Histopathological examination showed that many inflammatory cells were infiltrated into heart, liver and intestine, as well as the necrosis of liver, kidney and spleen. The genome consisted of one circular chromosome (4.493 Mb) and one plasmid (18.8 kb), and predicted to contain 4170 and 19 protein-coding genes, respectively. Multiple pathogenic and virulence factors (e.g., fimbria, adhesion, invasion, toxin, hemolysin, chemotaxis, secretion system), multidrug-resistant genes (e.g., ampC, per-1, oxa-1, sul1, tetR) and a novel genomic resistance island PRI519 were identified. Comparative genome analysis revealed the closest relationship was with P. rettgeri, and with P. heimbachae closer than with other Providencia spp. To our knowledge, this was first report on genomic characterization of multidrug-resistant pathogenic P. rettgeri in cultured turtles.


Subject(s)
Genome, Bacterial/genetics , Providencia/genetics , Providencia/pathogenicity , Turtles/microbiology , Animals , China , Genomics , Providencia/classification , Providencia/isolation & purification
12.
Fish Shellfish Immunol ; 106: 1052-1066, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32950679

ABSTRACT

Vibrio vulnificus is a major pathogen of cultured Cynoglossus semilaevis and results in skin ulceration and haemorrhage, but the proteomic mechanism of skin immunity against V. vulnificus remains unclear. In this study, we investigated the histopathology and skin immune response in C. semilaevis with V. vulnificus infection at the protein levels, the differential proteomic profiling of its skin was examined by using iTRAQ and LC-MS/MS analyses. A total of 951 proteins were identified in skin, in which 134 and 102 DEPs were screened at 12 and 36 hpi, respectively. Selected eleven immune-related DEPs (pvß, Hsp71, MLC1, F2, α2ML, HCII, C3, C5, C8ß, C9 and CD59) were verified for their immune roles in the V. vulnificus infection via using qRT-PCR assay. KEGG enrichment analysis revealed that most of the identified immune proteins were significantly associated with complement and coagulation cascades, antigen processing and presentation, salivary secretion and phagosome pathways. To our knowledge, this study is the first to describe the proteome response of C. semilaevis skin against V. vulnificus infection. The outcome of this study contributed to provide a new perspective for understanding the molecular mechanism of local skin mucosal immunity, and facilitating the development of novel mucosal vaccination strategies in fish.


Subject(s)
Fish Diseases/immunology , Fish Proteins/immunology , Flounder/immunology , Skin/immunology , Vibrio Infections/immunology , Animals , Fish Diseases/genetics , Fish Diseases/pathology , Fish Proteins/genetics , Flounder/microbiology , Gene Expression Regulation , Proteome , Skin/pathology , Vibrio , Vibrio Infections/genetics , Vibrio Infections/pathology , Vibrio Infections/veterinary
13.
J Fish Biol ; 97(5): 1542-1553, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32885862

ABSTRACT

Crucian carp (Carassius auratus) is one of the major freshwater species and important food fish in China. Fish skin acts as the first line of defence against pathogens, yet its molecular and immune mechanism remains unclear. In this study, a de novo transcriptome assembly of C. auratus skin was performed with the Illumina Hiseq 2000 platform. A total of 49,154,776 clean reads were assembled, among which 60,824 (46.86%), 37,103 (28.59%), 43,269 (33.33%) unigenes were annotated against National Center for Biotechnology Information, Gene Onotology and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, respectively. KEGG Orthology categories were significantly involved in immune system (20.50%), signal transduction (18.04%) and mucosal mucin genes (e.g., muc2, muc5AC, muc5B, muc17, muc18). The high expression of muc18 gene was observed in brain; that of muc2 in intestine; and that of muc5AC in skin, liver, spleen, intestine and muscle. Moreover, the potential 28,928 simple sequence repeats with the three most abundant dinucleotide repeat motifs (AC/GT, AG/CT, AT/AT) were detected in C. auratus. To authors' knowledge, this is the first report to describe the transcriptome analysis of C. auratus skin, and the outcome of this study contributed to the understanding of mucosal immune response of the skin and molecular markers in cyprinid species.


Subject(s)
Goldfish/genetics , Goldfish/metabolism , Mucins/genetics , Mucins/metabolism , Skin/metabolism , Transcriptome , Animals , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Immunity, Mucosal/genetics , Microsatellite Repeats/genetics , Tissue Distribution
14.
J Fish Dis ; 43(8): 889-914, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32608057

ABSTRACT

Rahnella aquatilis is an important pathogen of several aquatic organisms and is found widely distributed in the freshwater, soil, fish and human clinical samples. Our previously published study reported a novel pathogenic R. aquatilis strain KCL-5 to crucian carp (Carassius auratus). To further investigate the characteristics and pathogenesis caused by R. aquatilis, we here report on the pathological changes, bacterial genomic and proteomic analyses of strain KCL-5. Significantly pathological changes in liver, intestine, spleen and gills were observed in infected fish. The genome consists of one circular chromosome 5,062,299 bp with 52.02% GC content and two plasmids (506,827 bp, 52.16%; 173,433 bp, 50.00%) and predicted 5,653 genes, 77 tRNAs and 22 rRNAs. Some virulence factors were characterized, including outer membrane protein, haemolysin, RTX toxin, chemotaxis and T3SS secretion system. Antimicrobial resistance genes such as EmrAB-TolC, MexABC-OpmB and RosAB efflux pump were found in strain KCL-5. KEGG analysis showed that mainly functional modules were ABC transporters, biosynthesis of amino acids, two-component system, quorum sensing, flagellum assembly and chemotaxis, in which most of them were identified by using 2-DE/MS analyses. To our knowledge, this was first report on the molecular characteristics of R. aquatilis by multi-omics approaches, which will provide insights into the pathogenic mechanism of R. aquatilis infection in fish.


Subject(s)
Carps , Fish Diseases/microbiology , Genome, Bacterial , Gram-Negative Bacterial Infections/veterinary , Proteome , Rahnella/physiology , Animals , Bacterial Proteins/analysis , Fish Diseases/pathology , Genes, Bacterial , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/pathology , Rahnella/genetics
15.
Fish Shellfish Immunol ; 104: 111-122, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32525078

ABSTRACT

Fish intestine is an important constituent of the mucosal immune system. The gut and gut-associated lymphoid tissue construct a local immune environment. A Shewanella algae strain was previously reported to be a pathogen causing ascitic disease accompanied with intestinal inflammation in Cynoglossus semilaevis. This study aimed to investigate the intestine immune response in C. semilaevis to S. algae infection at the protein level. Two-dimensional electrophoresis coupled with mass spectrometry proteomics was utilized to compare protein expression in the intestines from normal and S. algae-infected C. semilaevis. A total of 70 differentially expressed proteins (DEPs), consisting of 16 upregulated and 54 downregulated proteins, were identified in the intestine tissue of C. Semilaevis. These protein expression changes were further validated using western blot analysis and quantitative real-time PCR. Gene ontology enrichment analysis showed that these 70 DEPs could be assigned across three categories: "cellular components", "molecular function", and "biological process". Forty-one DEPs (six up-regulated and 35 down-regulated proteins) related to metabolic processes were identified. In addition, 20 DEPs (eight up-regulated and 12 down-regulated proteins) related to stress and immune responses were identified. A protein-protein interaction network generated by the STRING (Search Tool for the Retrieval of Interacting Genes/protein) revealed that 30 DEPs interacted with one another to form an integrated network. Among them, 29 DEPs were related to stress, immune, and metabolism processes. In the network, some of the immune related proteins (C9, FGB, KNG1, apolipoprotein A-IV-like, and PDIA3) were up-regulated and most DEPs involved in metabolism processes were down-regulated. These results indicate that the immune defense response of the intestine was activated and the intestinal function associated with metabolism processes was disturbed. This study provides valuable information for further research into the functions of these DEPs in fish.


Subject(s)
Flatfishes/genetics , Flatfishes/immunology , Gene Expression/immunology , Immunity, Mucosal/genetics , Intestines/immunology , Shewanella/physiology , Animals , Electrophoresis, Gel, Two-Dimensional , Fish Diseases/immunology , Fish Diseases/microbiology , Fish Proteins/genetics , Fish Proteins/immunology , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/veterinary , Mass Spectrometry , Proteomics , Random Allocation
16.
Fish Shellfish Immunol ; 104: 673-685, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32505719

ABSTRACT

MicroRNAs (miRNAs) are non-coding RNA molecules that regulate gene expression in fish, but its regulatory mechanism of the skin mucosal immune response remains poorly understood. In order to investigate the immunological role of miRNAs, three sRNA libraries (mSC, mST1, mST2) from skin samples of crucian carp (Carassiusauratus) infected with Aeromonas hydrophila at three time points (0, 6 and 12 hpi) were constructed and examined using Illumina Hiseq 2000 platform. All of the identified miRNA, rRNA and tRNA were 69444 (13.39%), 29550 (5.70%) and 10704 (2.06%) in skin, respectively. At 6 and 12 hpi, 829 and 856 miRNAs were differentially expressed, respectively. Among these DEMs, 53 known and 10 novel miRNAs were all significantly differentially expressed during early infection (p < 0.01). GO and KEGG enrichment analyses revealed that 118111 target-genes were primarily involved in cellular process, metabolic process, biological regulation and stress response, such as antigen processing and presentation, complement and coagulation cascades, phagosome, MAPK, TLR, NF-κB and JAK-STAT signaling pathways. These results will help to elucidate the mechanism of miRNAs involved in the skin mucosal immune response of crucian carp against Aeromonas hydrophila infection.


Subject(s)
Aeromonas hydrophila/physiology , Carps , Fish Diseases/immunology , Gram-Negative Bacterial Infections/veterinary , Immunity, Mucosal , MicroRNAs/genetics , Transcriptome , Animals , Gram-Negative Bacterial Infections/immunology , MicroRNAs/immunology , Skin/immunology
17.
Vet Res Commun ; 44(2): 61-72, 2020 May.
Article in English | MEDLINE | ID: mdl-32472344

ABSTRACT

Aeromonas salmonicida is one of the most important pathogens in salmonids and non-salmonids species. Nevertheless, very little was reported in cyprinids about A. salmonicida infection. Hence, a pathogenic A. salmonicida subsp. salmonicida, namely isolate GCA-518, was isolated from diseased crucian carp Carassius auratus. Its optimal growth conditions were at 28 °C, pH 7.0 and 1.5% NaCl. Furthermore, the quantitative real-time PCR (qPCR) targeting serine protease (aspA) gene was established for rapid detection of the lowest limit of 5.6 × 102 copies per reaction. The pathogenicity was confirmed in crucian carp by intraperitoneal infection. Histopathologic examination displayed multifocal necrosis and infiltration of inflammatory cells in gill, liver, kidney and intestine. This is the first report on typical A. salmonicida infection in cultured crucian carp.


Subject(s)
Aeromonas salmonicida/physiology , Carps , Fish Diseases/diagnosis , Fish Diseases/microbiology , Gram-Negative Bacterial Infections/veterinary , Aeromonas salmonicida/genetics , Aeromonas salmonicida/isolation & purification , Aeromonas salmonicida/pathogenicity , Animals , Bacterial Proteins/genetics , Fish Diseases/pathology , Gram-Negative Bacterial Infections/diagnosis , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/pathology , Limit of Detection , Real-Time Polymerase Chain Reaction , Serine Endopeptidases/genetics
18.
Zebrafish ; 17(2): 91-103, 2020 04.
Article in English | MEDLINE | ID: mdl-32176570

ABSTRACT

Spring viremia of carp virus (SVCV) causes the skin hemorrhagic disease in cyprinid species, but its molecular mechanism of skin immune response remains unclear at the protein level. In the present study, the differential proteomics of the zebrafish (Danio rerio) skin in response to SVCV infection were examined by isobaric tags for relative and absolute quantitation and quantitative polymerase chain reaction (qPCR) assays. A total of 3999 proteins were identified, of which 320 and 181 proteins were differentially expressed at 24 and 96 h postinfection, respectively. The expression levels of 16 selected immune-related differentially expressed proteins (DEPs) were confirmed by qPCR analysis. Furthermore, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that DEPs were significantly associated with complement, inflammation, and antiviral response. The protein-protein interaction network of cytoskeleton-associated proteins, ATPase-related proteins, and parvalbumins from DEPs was shown to be involved in skin immune response. This is first report on the skin proteome profiling of zebrafish against SVCV infection, which will contribute to understand the molecular mechanism of local mucosal immunity in fish.


Subject(s)
Fish Diseases/immunology , Fish Proteins/immunology , Proteome/immunology , Rhabdoviridae Infections/veterinary , Rhabdoviridae/physiology , Skin/immunology , Zebrafish/immunology , Animals , Fish Diseases/virology , Rhabdoviridae Infections/immunology , Rhabdoviridae Infections/virology
19.
AMB Express ; 10(1): 40, 2020 Feb 27.
Article in English | MEDLINE | ID: mdl-32107652

ABSTRACT

In the present study, a Gram-positive bacterium was isolated from the intestine of healthy crucian carp Carassius auratus and named strain R8. It was initially identified as Enterococcus faecium according to its morphological, physiological and biochemical characteristics. Further identification by using 16S rRNA gene sequence analysis confirmed the R8 strain (Genbank accession no. MF928076) as E. faecium. Challenge and hemolysis experiments showed that the E. faecium R8 strain had no toxicity to the crucian carp. Bacteriostatic experiment showed that this isolate obviously inhibited the growth of Aeromonas veronii and Staphylococcus haemolyticus. The proliferation of E. faecium R8 strain occurred after exposure to various growth conditions such as at pH values from 2.0 to 4.0 for 8 h, bile concentrations from 0.2 to 1.2% and high temperature of 80 °C. This bacterial strain grew best under the condition of 37 °C, pH 7.0 and salinity 30 ppt, and its growth curve exhibited four distinct phases. These results showed that the E. faecium R8 strain had potential probiotic characteristics and could be used as a candidate strain for aquatic probiotics.

20.
Fish Shellfish Immunol ; 94: 510-516, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31541778

ABSTRACT

Skin plays an important role in the innate immune responses of fish, particularly towards bacterial infection. To understand the molecular mechanism of mucosal immunity of fish during bacterial challenge, a de novo transcriptome assembly of crucian carp Carassius auratus skin upon Aeromonas hydrophila infection was performed, the latter with Illumina Hiseq 2000 platform. A total of 118111 unigenes were generated and of these, 9693 and 8580 genes were differentially expressed at 6 and 12 h post-infection, respectively. The validity of the transcriptome results of eleven representative genes was verified by quantitative real-time PCR (qRT-PCR) analysis. A comparison with the transcriptome profiling of zebrafish skin to A. hydrophila with regards to the mucosal immune responses revealed similarities in the complement system, chemokines, heat shock proteins and the acute-phase response. GO and KEGG enrichment pathway analyses displayed the significant immune responses included TLR, MAPK, JAK-STAT, phagosome and three infection-related pathways (ie., Salmonella, Vibrio cholerae and pathogenic Escherichia coli) in skin. To our knowledge, this study is the first to describe the transcriptome analysis of C. auratus skin during A. hydrophila infection. The outcome of this study contributed to the understanding of the mucosal defense mechanisms in cyprinid species.


Subject(s)
Fish Diseases/immunology , Goldfish/genetics , Goldfish/immunology , Immunity, Innate/genetics , Skin/metabolism , Aeromonas hydrophila/physiology , Animals , Gene Expression Profiling/veterinary , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...