Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Cell Res ; 26(1): 83-102, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26691752

ABSTRACT

Sensory neurons are distinguished by distinct signaling networks and receptive characteristics. Thus, sensory neuron types can be defined by linking transcriptome-based neuron typing with the sensory phenotypes. Here we classify somatosensory neurons of the mouse dorsal root ganglion (DRG) by high-coverage single-cell RNA-sequencing (10 950 ± 1 218 genes per neuron) and neuron size-based hierarchical clustering. Moreover, single DRG neurons responding to cutaneous stimuli are recorded using an in vivo whole-cell patch clamp technique and classified by neuron-type genetic markers. Small diameter DRG neurons are classified into one type of low-threshold mechanoreceptor and five types of mechanoheat nociceptors (MHNs). Each of the MHN types is further categorized into two subtypes. Large DRG neurons are categorized into four types, including neurexophilin 1-expressing MHNs and mechanical nociceptors (MNs) expressing BAI1-associated protein 2-like 1 (Baiap2l1). Mechanoreceptors expressing trafficking protein particle complex 3-like and Baiap2l1-marked MNs are subdivided into two subtypes each. These results provide a new system for cataloging somatosensory neurons and their transcriptome databases.


Subject(s)
Ganglia, Spinal/cytology , Gene Regulatory Networks , Sensory Receptor Cells/cytology , Transcriptome , Animals , Base Sequence , Cells, Cultured , Ganglia, Spinal/metabolism , Male , Mechanoreceptors/cytology , Mechanoreceptors/metabolism , Mice , Mice, Inbred C57BL , Multigene Family , Nociceptors/cytology , Nociceptors/metabolism , Patch-Clamp Techniques , Sensory Receptor Cells/metabolism , Sequence Analysis, RNA
3.
Cell Res ; 25(3): 318-34, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25633594

ABSTRACT

Na⁺, K⁺-ATPase (NKA) is required to generate the resting membrane potential in neurons. Nociceptive afferent neurons express not only the α and ß subunits of NKA but also the γ subunit FXYD2. However, the neural function of FXYD2 is unknown. The present study shows that FXYD2 in nociceptive neurons is necessary for maintaining the mechanical allodynia induced by peripheral inflammation. FXYD2 interacted with α1NKA and negatively regulated the NKA activity, depolarizing the membrane potential of nociceptive neurons. Mechanical allodynia initiated in FXYD2-deficient mice was abolished 4 days after inflammation, whereas it persisted for at least 3 weeks in wild-type mice. Importantly, the FXYD2/α1NKA interaction gradually increased after inflammation and peaked on day 4 post inflammation, resulting in reduction of NKA activity, depolarization of neuron membrane and facilitation of excitatory afferent neurotransmission. Thus, the increased FXYD2 activity may be a fundamental mechanism underlying the persistent hypersensitivity to pain induced by inflammation.


Subject(s)
Hyperalgesia/physiopathology , Inflammation/physiopathology , Nociceptors/physiology , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , COS Cells , Cell Line , Chlorocebus aethiops , Male , Membrane Potentials/physiology , Mice , Mice, Knockout , Nociceptors/metabolism , Pain/physiopathology , RNA, Messenger/genetics , Sodium-Potassium-Exchanging ATPase/genetics , Synaptic Transmission/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...