Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Signal ; 14(699): eabe3773, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34516755

ABSTRACT

Morphine and other opiates are highly effective for treating moderate to severe pain. However, morphine-induced hyperalgesia and analgesic tolerance prevent durable efficacy in patients. Here, we investigated the underlying molecular mechanisms of this phenomenon. We found that repeated subcutaneous injections of morphine in mice increased the abundance of the cytokine interleukin-33 (IL-33) primarily in oligodendrocytes and astrocytes and that of its receptor ST2 mainly in astrocytes. Pharmacological inhibition or knockdown of IL-33 or ST2 in the spinal cord attenuated morphine-induced hyperalgesia and analgesic tolerance in mice, as did global knockout of either Il33 or St2, which also reduced morphine-enhanced astroglial activation and excitatory synaptic transmission. Furthermore, a pathway mediated by tumor necrosis factor receptor­associated factor 6 (TRAF6) and the kinase JNK in astrocytes was required for IL-33­mediated hyperalgesia and tolerance through promoting the production of the chemokine CXCL12 in the spinal cord. The findings suggest that targeting IL-33­ST2 signaling could enable opioids to produce sustained analgesic effects in chronic pain management.


Subject(s)
Hyperalgesia , Morphine , Animals , Hyperalgesia/chemically induced , Interleukin-33 , Morphine/adverse effects , Rats , Rats, Sprague-Dawley , Receptors, Interleukin-1 , Spinal Cord
2.
J Pain ; 21(1-2): 238-257, 2020.
Article in English | MEDLINE | ID: mdl-31494272

ABSTRACT

Orofacial pain is characterized by its easy spread to adjacent areas, thus presenting with primary hyperalgesia (hypersensitivity at the site of injury) and secondary hyperalgesia (extraterritorial hypersensitivity outside the injured zone). However, the mechanisms behind the secondary hyperalgesia are poorly understood. In the present study, we used a mouse model of partial transection of the infraorbital nerve (pT-ION) to study whether calcium channel subunit α2δ1 (Cavα2δ1) and its downstream signaling contributes to the development of secondary hyperalgesia in the orofacial area. pT-ION caused primary (V2 skin) and secondary (V3 skin) hyperalgesia, which was reversed by the Cavα2δ1 antagonist gabapentin and by the expression of Cavα2δ1-targeting interfering RNA in trigeminal ganglion (TG)-V3 neurons. pT-ION induced increased expression of PKC and TRPA1, which was reversed by Cavα2δ1-targeting interfering RNA, and PKC inhibition reversed the upregulation of TRPA1 and gap junction (GJ) proteins induced by pT-ION. Cavα2δ1 overexpression in TG-V2 neurons induced the upregulation of PKC, TRPA1, and the GJ proteins in the TG and trigeminal subnucleus caudalis and induced hypersensitivity in the V3 skin area, which was reversed by TRPA1, GJ, or PKC blockade. Thus, we conclude that Cavα2δ1 contributes to the development of secondary hyperalgesia through its downstream PKC-TRPA1/GJ signaling pathways. PERSPECTIVE: This study demonstrates that the activation of Cavα2δ1 and the downstream PKC-TRPA1/GJ signaling pathway contributes greatly to trigeminal nerve injury-induced secondary mechanical and cold hyperalgesia. This suggests that inhibitors of Cavα2δ1, TRPA1, or GJs might be effective treatments for nerve injury-induced spreading of orofacial pain.


Subject(s)
Calcium Channels/metabolism , Facial Pain/metabolism , Gap Junctions/metabolism , Hyperalgesia/metabolism , Protein Kinase C/metabolism , Signal Transduction/physiology , TRPA1 Cation Channel/metabolism , Trigeminal Ganglion/injuries , Animals , Disease Models, Animal , Humans , Male , Mice , Mice, Inbred C57BL
3.
Anesthesiology ; 131(5): 1125-1147, 2019 11.
Article in English | MEDLINE | ID: mdl-31567367

ABSTRACT

BACKGROUND: Cancer pain is a pervasive clinical symptom impairing life quality. Vascular endothelial growth factor A has been well studied in tumor angiogenesis and is recognized as a therapeutic target for anti-cancer treatment. This study tested the hypothesis that vascular endothelial growth factor A and vascular endothelial growth factor receptor 2 contribute to bone cancer pain regulation associated with spinal central sensitization. METHODS: This study was performed on female rats using a metastatic breast cancer bone pain model. Nociceptive behaviors were evaluated by mechanical allodynia, thermal hyperalgesia, spontaneous pain, and CatWalk gait analysis. Expression levels were measured by real-time quantitative polymerase chain reaction, western blot, and immunofluorescence analysis. Excitatory synaptic transmission was detected by whole-cell patch-clamp recordings. The primary outcome was the effect of pharmacologic intervention of spinal vascular endothelial growth factor A/vascular endothelial growth factor receptor 2-signaling on bone cancer pain behaviors. RESULTS: The mRNA and protein expression of vascular endothelial growth factor A and vascular endothelial growth factor receptor 2 were upregulated in tumor-bearing rats. Spinal blocking vascular endothelial growth factor A or vascular endothelial growth factor receptor 2 significantly attenuated tumor-induced mechanical allodynia (mean ± SD: vascular endothelial growth factor A, 7.6 ± 2.6 g vs. 5.3 ± 3.3 g; vascular endothelial growth factor receptor 2, 7.8 ± 3.0 g vs. 5.2 ± 3.4 g; n = 6; P < 0.0001) and thermal hyperalgesia (mean ± SD: vascular endothelial growth factor A, 9.0 ± 2.4 s vs. 7.4 ± 2.7 s; vascular endothelial growth factor receptor 2, 9.3 ± 2.5 s vs. 7.5 ± 3.1 s; n = 6; P < 0.0001), as well as spontaneous pain and abnormal gaits. Exogenous vascular endothelial growth factor A enhanced excitatory synaptic transmission in a vascular endothelial growth factor receptor 2-dependent manner, and spinal injection of exogenous vascular endothelial growth factor A was sufficient to cause pain hypersensitivity via vascular endothelial growth factor receptor 2-mediated activation of protein kinase C and Src family kinase in naïve rats. Moreover, spinal blocking vascular endothelial growth factor A/vascular endothelial growth factor receptor 2 pathways suppressed protein kinase C-mediated N-methyl-D-aspartate receptor activation and Src family kinase-mediated proinflammatory cytokine production. CONCLUSIONS: Vascular endothelial growth factor A/vascular endothelial growth factor receptor 2 contributes to central sensitization and bone cancer pain via activation of neuronal protein kinase C and microglial Src family kinase pathways in the spinal cord.


Subject(s)
Bone Neoplasms/metabolism , Cancer Pain/metabolism , Pain Measurement/methods , Signal Transduction/physiology , Vascular Endothelial Growth Factor A/biosynthesis , Animals , Bone Neoplasms/pathology , Cancer Pain/pathology , Female , Injections, Spinal , Pain Measurement/drug effects , Quinazolines/administration & dosage , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/biosynthesis
4.
J Pain ; 20(1): 16.e1-16.e16, 2019 01.
Article in English | MEDLINE | ID: mdl-30102991

ABSTRACT

Acupoint catgut embedding (ACE) is a widely used traditional Chinese medicine method to manage various diseases, including chronic inflammatory pain. We sought to assess the possible analgesic effects of ACE in comparison with electroacupuncture (EA) and to study the analgesic mechanisms of ACE in a rat model of inflammatory pain induced by injection of complete Freund's adjuvant (CFA) into the hind paw of rats. The von Frey, radiant heat, and gait analysis tests were performed to evaluate the analgesic effects of ACE and EA, and Western blot and immunohistochemistry assays were carried out to determine the molecular mechanisms of ACE. ACE treatments were administered every 4 days or every week with different acupoints (ipsilateral, contralateral, or bilateral ST36 and GB30 acupoints). The most effective ACE strategy for attenuating the nocifensive response induced by CFA injection was performing ACE once a week at ipsilateral ST36 in combination with GB30. EA treatment every other day at ipsilateral ST36 and GB30 showed comparable analgesic effects. ACE inhibited the increased activation of the GluN1 subunit of the N-methyl-d-aspartate receptor and the subsequent Ca2+-dependent signals (CaMKII, ERK, and CREB) that take place in response to CFA. The effects of ACE were similar to intrathecal injection of vilazodone (a serotonin 1A receptor [5-HT1AR] agonist) and were blocked by WAY-100635 (a 5-HT1AR antagonist). In summary, we show that ACE attenuates CFA-induced inflammatory pain in rats by activating spinal 5-HT1AR and by inhibiting the phosphorylation of GluN1, thus, inhibiting the activation of Ca2+-dependent signaling cascades. PERSPECTIVE: This article presents the novel evidence concerning the spinal 5-HT1AR activation-related molecular signaling of ACE analgesia in a rat model of CFA-induced inflammatory pain. This work may help clinicians to verify the effectiveness of ACE analgesia and to better understand the underlying mechanism.


Subject(s)
Acupuncture Analgesia , Acupuncture Points , Catgut , Electroacupuncture , Inflammation/metabolism , Pain Management , Pain/metabolism , Receptor, Serotonin, 5-HT1A/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Serotonin 5-HT1 Receptor Agonists/pharmacology , Acupuncture Analgesia/methods , Animals , Disease Models, Animal , Electroacupuncture/methods , Freund's Adjuvant/pharmacokinetics , Inflammation/chemically induced , Male , Pain/chemically induced , Phosphorylation , Rats , Rats, Sprague-Dawley , Serotonin 5-HT1 Receptor Agonists/administration & dosage , Serotonin 5-HT1 Receptor Antagonists/pharmacology , Spinal Cord/drug effects , Vilazodone Hydrochloride/pharmacology
5.
Brain Behav Immun ; 68: 132-145, 2018 02.
Article in English | MEDLINE | ID: mdl-29051087

ABSTRACT

Chemotherapy-induced peripheral neuropathy (CIPN) is a common adverse side effect of many antineoplastic agents. Patients treated with chemotherapy often report pain and paresthesias in a "glove-and-stocking" distribution. Diverse mechanisms contribute to the development and maintenance of CIPN. However, the role of spinal microglia in CIPN is not completely understood. In this study, cisplatin-treated mice displayed persistent mechanical allodynia, sensory deficits and decreased density of intraepidermal nerve fibers (IENFs). In the spinal cord, activation of microglia, but not astrocyte, was persistently observed until week five after the first cisplatin injection. Additionally, mRNA levels of inflammation related molecules including IL-1ß, IL-6, tumor necrosis factor (TNF)-α, inducible nitric oxide synthase (iNOS) and CD16, were increased after cisplatin treatment. Intraperitoneal (i.p.) or intrathecal (i.t.) injection with minocycline both alleviated cisplatin-induced mechanical allodynia and sensory deficits, and prevented IENFs loss. Furthermore, cisplatin enhanced triggering receptor expressed on myeloid cells 2 (TREM2) /DNAX-activating protein of 12 kDa (DAP12) signaling in the spinal cord microglia. The blockage of TREM2 by i.t. injecting anti-TREM2 neutralizing antibody significantly attenuated cisplatin-induced mechanical allodynia, sensory deficits and IENFs loss. Meanwhile, anti-TREM2 neutralizing antibody prominently suppressed the spinal IL-6, TNF-α, iNOS and CD16 mRNA level, but it dramatically up-regulated the anti-inflammatory cytokines IL-4 and IL-10. The data demonstrated that cisplatin triggered persistent activation of spinal cord microglia through strengthening TREM2/DAP12 signaling, which further resulted in CIPN. Functional blockage of TREM2 or inhibition of microglia both benefited for cisplatin-induced peripheral neuropathy. Microglial TREM2/DAP12 may serve as a potential target for CIPN intervention.


Subject(s)
Membrane Glycoproteins/metabolism , Peripheral Nervous System Diseases/immunology , Peripheral Nervous System Diseases/metabolism , Receptors, Immunologic/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Astrocytes/metabolism , Cisplatin/adverse effects , Cytokines/metabolism , Disease Models, Animal , Hyperalgesia/metabolism , Interleukin-10/metabolism , Interleukin-1beta/metabolism , Interleukin-4/metabolism , Interleukin-6/metabolism , Macrophage Activation , Male , Membrane Glycoproteins/physiology , Mice , Mice, Inbred C57BL , Microglia/metabolism , Microglia/physiology , Minocycline/pharmacology , Nitric Oxide Synthase Type II/metabolism , Pain/metabolism , Receptors, IgG/metabolism , Receptors, Immunologic/physiology , Signal Transduction , Spinal Cord/pathology , Spinal Cord/physiology , Tumor Necrosis Factor-alpha/metabolism
6.
Mol Med Rep ; 17(1): 1157-1165, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29115641

ABSTRACT

Cumulative evidence has suggested an association between stress and alcohol self­administration; however, less is known about the role of traumatic stress in alcohol drinking behavior. It has been reported that cocaine­ and amphetamine­regulated transcript (CART) 55­102 may be involved in mediating stress responses and regulating reward and reinforcement. The aim of the present study was to evaluate the role of CART 55­102 in alcohol drinking behavior of rats in the presence or absence of traumatic stress. Alcohol drinking behavior was examined using the two­bottle choice drinking paradigm (one bottle contained 10% alcohol and the other contained filtered water), which was initiated 1, 3 and 7 days post­trauma (T1, T3 and T7), for 14 days in rats; the control group was initiated from T0. The results indicated that exposure to trauma significantly increased alcohol consumption and preference, particularly drinking from T3. Immunohistochemistry revealed that the lowest level of CART 55­102 immunoreactivity within the paraventricular nucleus (PVN) was exhibited in the T3 group. Additionally, an intra­PVN injection of CART 55­102 attenuated alcohol­drinking behavior in a dose­dependent manner, in the T3 group. Furthermore, the significant increase in circulating adrenocorticotrophic hormone (ACTH) and corticosterone (CORT) concentrations in the T3 group were inhibited by CART 55­102 administration to the PVN, in particular CORT levels were significantly decreased. Positive correlations between alcohol preference and ACTH and CORT levels were also observed. These results indicated that CART 55­102 in the PVN serves an inhibitory role in traumatic stress­induced alcohol drinking behavior, possibly through disturbing hypothalamus­pituitary­adrenal axis hyperactivity.


Subject(s)
Drinking Behavior , Gene Expression Regulation , Nerve Tissue Proteins/genetics , Paraventricular Hypothalamic Nucleus/metabolism , Peptide Fragments/genetics , Stress, Psychological/genetics , Amphetamines/metabolism , Amphetamines/pharmacology , Animals , Behavior, Animal , Cocaine/metabolism , Cocaine/pharmacology , Female , Male , Nerve Tissue Proteins/administration & dosage , Paraventricular Hypothalamic Nucleus/drug effects , Peptide Fragments/administration & dosage , Rats , Stress, Psychological/metabolism
7.
Sci Rep ; 7(1): 4005, 2017 06 21.
Article in English | MEDLINE | ID: mdl-28638088

ABSTRACT

We previously demonstrated that the chemokine receptor CXCR4 plays an important role in cancer-induced bone pain by activating spinal neurons and glial cells. However, the specific neuronal mechanism of CXCR4 signaling is not clear. We further report that CXCR4 contributes to the activation of the neuronal CaMKII/CREB pathway in cancer-induced bone pain. We used a tumor cell implantation (TCI) model and observed that CXCR4, p-CaMKII and p-CREB were persistently up-regulated in spinal neurons. CXCR4 also co-expressed with p-CaMKII and p-CREB, and mediated p-CaMKII and p-CREB expression after TCI. Intrathecal delivery of CXCR4 siRNA or CaMKII inhibitor AIP2 abrogated TCI-induced pain hypersensitivity and TCI-induced increase in p-CaMKII and p-CREB expression. Intrathecal injection of the principal ligand for CXCR4, SDF-1, promoted p-CaMKII and p-CREB expression in naive rats, which was prevented by post-administration of CXCR4 inhibitor Plerixafor or PLC inhibitor U73122. Plerixafor, U73122, or AIP2 also alleviated SDF-1-elicited pain behaviors. Intrathecal injection of CXCR4 siRNA significantly suppressed TCI-induced up-regulation of NMDAR1 mRNA and protein, which is a known gene target of CREB. Collectively, these results suggest that the CaMKII/CREB pathway in spinal neurons mediates CXCR4-facilitated pain hypersensitivity in cancer rats.


Subject(s)
Bone Neoplasms/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Cancer Pain/genetics , Cyclic AMP Response Element-Binding Protein/genetics , Receptors, CXCR4/genetics , Animals , Benzylamines , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Bone Neoplasms/secondary , Cancer Pain/drug therapy , Cancer Pain/pathology , Carcinogenesis/genetics , Chemokine CXCL12/genetics , Cyclams , Estrenes/administration & dosage , Gene Expression Regulation, Neoplastic , Heterocyclic Compounds/administration & dosage , Humans , Injections, Spinal , Membrane Glycoproteins/genetics , Neuroglia/metabolism , Neuroglia/pathology , Neurons/drug effects , Neurons/pathology , Pyrrolidinones/administration & dosage , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use , Rats , Signal Transduction/drug effects , Spinal Cord/metabolism , Spinal Cord/pathology
8.
Mol Pain ; 122016.
Article in English | MEDLINE | ID: mdl-27599867

ABSTRACT

BACKGROUND: Increasing evidence suggests that microRNAs are functionally involved in the initiation and maintenance of pain hypersensitivity, including chronic morphine analgesic tolerance, through the posttranscriptional regulation of pain-related genes. We have previously demonstrated that miR-219 regulates inflammatory pain in the spinal cord by targeting calcium/calmodulin-dependent protein kinase II gamma (CaMKIIγ). However, whether miR-219 regulates CaMKIIγ expression in the dorsal root ganglia to mediate morphine tolerance remains unclear. RESULTS: MiR-219 expression was downregulated and CaMKIIγ expression was upregulated in mouse dorsal root ganglia following chronic morphine treatment. The changes in miR-219 and CaMKIIγ expression closely correlated with the development of morphine tolerance, which was measured using the reduction of percentage of maximum potential efficiency to thermal stimuli. Morphine tolerance was markedly delayed by upregulating miR-219 expression using miR-219 mimics or downregulating CaMKIIγ expression using CaMKIIγ small interfering RNA. The protein and mRNA expression of brain-derived neurotrophic factor were also induced in dorsal root ganglia by prolonged morphine exposure in a time-dependent manner, which were transcriptionally regulated by miR-219 and CaMKIIγ. Scavenging brain-derived neurotrophic factor via tyrosine receptor kinase B-Fc partially attenuated morphine tolerance. Moreover, functional inhibition of miR-219 via miR-219-sponge in naive mice elicited thermal hyperalgesia and spinal neuronal sensitization, which were both suppressed by CaMKIIγ small interfering RNA or tyrosine receptor kinase B-Fc. CONCLUSIONS: These results demonstrate that miR-219 contributes to the development of chronic tolerance to morphine analgesia in mouse dorsal root ganglia by targeting CaMKIIγ and enhancing CaMKIIγ-dependent brain-derived neurotrophic factor expression.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Drug Tolerance/physiology , Ganglia, Spinal/drug effects , Gene Expression Regulation/drug effects , MicroRNAs/metabolism , Morphine/pharmacology , Analgesics, Opioid/pharmacology , Animals , CREB-Binding Protein/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Disease Models, Animal , Freund's Adjuvant/toxicity , Ganglia, Spinal/metabolism , Gene Expression Regulation/physiology , Hyperalgesia/drug therapy , Hyperalgesia/etiology , Hyperalgesia/metabolism , Male , Mice , MicroRNAs/genetics , Pain/chemically induced , Pain/drug therapy , Proto-Oncogene Proteins c-fos/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , Signal Transduction/drug effects , Time Factors
9.
J Neurochem ; 132(4): 452-63, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25393328

ABSTRACT

The activation of MAPK pathways in spinal cord and subsequent production of proinflammatory cytokines in glial cells contribute to the development of spinal central sensitization, the basic mechanism underlying bone cancer pain (BCP). Our previous study showed that spinal CXCL12 from astrocytes mediates BCP generation by binding to CXCR4 in both astrocyters and microglia. Here, we verified that CXCL12/CXCR4 signaling contributed to BCP through a MAPK-mediated mechanism. In naïve rats, a single intrathecal administration of CXCL12 considerably induced pain hyperalgesia and phosphorylation expression of spinal MAPK members (including extracellular signal-regulated kinase, p38, and c-Jun N-terminal kinase), which could be partially prevented by pre-treatment with CXCR4 inhibitor AMD3100. This CXCL12-induced hyperalgesia was also reduced by MAPK inhibitors. In bone cancer rats, tumor cell inoculation into the tibial cavity caused prominent and persistent pain hyperalgesia, and associated with up-regulation of CXCL12 and CXCR4, activation of glial cells, phosphorylation of MAPKs, and production of proinflammatory cytokines in the spinal cord. These tumor cell inoculation-induced behavioral and neurochemical alterations were all suppressed by blocking CXCL12/CXCR4 signaling or MAPK pathways. Taken together, these results demonstrate that spinal MAPK pathways mediated CXCL12/CXCR4-induced pain hypersensitivity in bone cancer rats, which could be druggable targets for alleviating BCP and glia-derived neuroinflammation. Following tumor cell inoculation, chemokine CXCL12 from astrocytes spreads around the spinal environment, resulting in functional activation of CXCR4-expressing astrocytes and microglia. Once glia are activated, they may initiate MAPK (mitogen-activated protein kinase) pathways, and subsequently produce proinflammatory cytokines and chemokines. Among them, CXCL12 could reinforce the astrocytic and microglial activation in autocrine and paracrine manners. Such positive feedback loops sustain perseverant neuroinflammation, facilitate glial activation, and finally lead to bone cancer pain. IL = interleukin; TNF = tumor necrosis factor.


Subject(s)
Bone Neoplasms/metabolism , Chemokine CXCL12/biosynthesis , Hyperalgesia/metabolism , Mitogen-Activated Protein Kinases/physiology , Neuroglia/metabolism , Receptors, CXCR4/biosynthesis , Animals , Bone Neoplasms/pathology , Chemokine CXCL12/administration & dosage , Chemokine CXCL12/toxicity , Female , Hyperalgesia/chemically induced , Hyperalgesia/pathology , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/pathology , Injections, Spinal , Neuroglia/drug effects , Pain/chemically induced , Pain/metabolism , Pain/pathology , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Signal Transduction/physiology , Spinal Cord/drug effects , Spinal Cord/metabolism , Spinal Cord/pathology
10.
J Neuroinflammation ; 11: 75, 2014 Apr 16.
Article in English | MEDLINE | ID: mdl-24735601

ABSTRACT

BACKGROUND: Previous studies have demonstrated that chemokine CXCL12 and its receptor CXCR4 are critical for pain sensitization, but the mechanisms involved are not clear. In this study, we investigated the specific cellular mechanisms of CXCL12/CXCR4 chemokine signaling in the development and maintenance of bone cancer pain after tumor cell implantation (TCI). METHODS: TCI in the tibial cavity of rats was used to establish a bone cancer pain model. Mechanical allodynia and thermal hyperalgesia were determined by measuring the paw withdrawal threshold and latency, respectively. The protein expression and cellular localization of CXCL12 and CXCR4 were detected by western blot and immunofluorescence staining. The sensitization of neurons, activation of astrocytes and microglia were examined by observing the immunofluorescence intensity of c-Fos, GFAP and IBA1. RESULTS: Our results demonstrated that CXCL12 was upregulated in a time-related manner, both in the dorsal root ganglia and spinal cord after TCI. Spinal CXCL12 was predominately expressed in astrocytes, and an intrathecal injection of astrocyte metabolic inhibitor fluorocitrate or selective JNK inhibitor SP600125 abolished TCI-induced CXCL12 production. A single intrathecal injection of a CXCL12 neutralizing antibody (10 µg/10 µl) at day 10 after TCI transiently reversed bone cancer pain in a dose-dependent manner. Whereas repetitive intrathecal administration of a CXCL12 neutralizing antibody (10 µg/10 µl, once a day from day 3 to 5 after TCI) significantly delayed the onset of TCI-induced pain behaviors for nearly five days. Spinal CXCR4 was also upregulated after TCI and colocalized with neurons, astrocytes and microglia. Blocking CXCR4 suppressed TCI-induced activation of neurons, astrocytes and microglia in the spinal cord at day 14. Repeated intrathecal administration of AMD3100 (5 µg/10 µl, once a day for three days) significantly delayed and suppressed the initiation and persistence of bone cancer pain in the early phase (at day 5, 6 and 7 after TCI) and in the late phase (at day 12, 13 and 14 after TCI) of bone cancer, respectively. CONCLUSIONS: Taken together, these results demonstrate that CXCL12/CXCR4 signaling contributed to the development and maintenance of bone cancer pain via sensitizing neurons and activating astrocytes and microglia. Additionally, this chemokine signaling may be a potential target for treating bone cancer pain.


Subject(s)
Astrocytes/metabolism , Bone Neoplasms/complications , Carcinoma/complications , Chemokine CXCL12/metabolism , Neurons/metabolism , Pain/etiology , Receptors, CXCR4/metabolism , Spinal Cord/pathology , Analysis of Variance , Animals , Bone Neoplasms/pathology , Carcinoma/pathology , Disease Models, Animal , Female , Hyperalgesia/diagnosis , Hyperalgesia/etiology , Pain/pathology , Rats , Rats, Sprague-Dawley , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...