Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomacromolecules ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829675

ABSTRACT

Despite great progress in the hydrogel hemostats and dressings, they generally lack resistant vascular bursting pressure and intrinsic bioactivity to meet arterial massive hemorrhage and proheal wounds. To address the problems, we design a kind of biomimetic and wound microenvironment-modulating PEGylated glycopolypeptide hydrogels that can be easily injected and gelled in ∼10 s. Those glycopolypeptide hydrogels have suitable tissue adhesion of ∼20 kPa, high resistant bursting pressure of ∼150 mmHg, large microporosity of ∼15 µm, and excellent biocompatibility with ∼1% hemolysis ratio and negligible inflammation. They performed better hemostasis in rat liver and rat and rabbit femoral artery bleeding models than Fibrin glue, Gauze, and other hydrogels, achieving fast arterial hemostasis of <20 s and lower blood loss of 5-13%. As confirmed by in vivo wound healing, immunofluorescent imaging, and immunohistochemical and histological analyses, the mannose-modified hydrogels could highly boost the polarization of anti-inflammatory M2 phenotype and downregulate pro-inflammatory tumor necrosis factor-α to relieve inflammation, achieving complete full-thickness healing with thick dermis, dense hair follicles, and 90% collagen deposition. Importantly, this study provides a versatile strategy to construct biomimetic glycopolypeptide hydrogels that can not only resist vascular bursting pressure for arterial massive hemorrhage but also modulate inflammatory microenvironment for wound prohealing.

2.
Mater Today Bio ; 20: 100659, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37229212

ABSTRACT

Proteoglycans (PGs), also known as a viscous lubricant, is the main component of the cartilage extracellular matrix (ECM). The loss of PGs is accompanied by the chronic degeneration of cartilage tissue, which is an irreversible degeneration process that eventually develops into osteoarthritis (OA). Unfortunately, there is still no substitute for PGs in clinical treatments. Herein, we propose a new PGs analogue. The Glycopolypeptide hydrogels in the experimental groups with different concentrations were prepared by Schiff base reaction (Gel-1, Gel-2, Gel-3, Gel-4, Gel-5 and Gel-6). They have good biocompatibility and adjustable enzyme-triggered degradability. The hydrogels have a loose and porous structure suitable for the proliferation, adhesion, and migration of chondrocytes, good anti-swelling, and reduce the reactive oxygen species (ROS) in chondrocytes. In vitro experiments confirmed that the glycopolypeptide hydrogels significantly promoted ECM deposition and up-regulated the expression of cartilage-specific genes, such as type-II collagen, aggrecan, and glycosaminoglycans (sGAG). In vivo, the New Zealand rabbit knee articular cartilage defect model was established and the hydrogels were implanted to repair it, the results showed good cartilage regeneration potential. It is worth noting that the Gel-3 group, with a pore size of 122 â€‹± â€‹12 â€‹µm, was particularly prominent in the above experiments, and provides a theoretical reference for the design of cartilage-tissue regeneration materials in the future.

3.
Tissue Eng Part B Rev ; 29(4): 414-428, 2023 08.
Article in English | MEDLINE | ID: mdl-36785967

ABSTRACT

Peripheral nerve injury (PNI) is a common disease that has profound impact on the health of patients, but has poor prognosis. The gold standard for the treatment of peripheral nerve defects is autologous nerve grafting; notwithstanding, due to the extremely high requirement for surgeons and medical facilities, there is great interest in developing better treatment strategies for PNI. Low-intensity pulsed ultrasound (LIPUS) is a noninterventional stimulation method characterized by low-intensity pulsed waves. It has good therapeutic effect on fractures, inflammation, soft tissue regeneration, and nerve regulation, and can participate in PNI repair from multiple perspectives. This review concentrates on the effects and mechanisms of LIPUS in the repair of PNI from the perspective of LIPUS stimulation of neural cells and stem cells, modulation of neurotrophic factors, signaling pathways, proinflammatory cytokines, and nerve-related molecules. In addition, the effects of LIPUS on nerve conduits are reviewed, as nerve conduits are expected to be a successful alternative treatment for PNI with the development of tissue engineering. Overall, the application advantages and prospects of LIPUS in the repair of PNI are highlighted by summarizing the effects of LIPUS on seed cells, neurotrophic factors, and nerve conduits for neural tissue engineering.


Subject(s)
Peripheral Nerve Injuries , Humans , Peripheral Nerve Injuries/therapy , Tissue Engineering , Signal Transduction , Ultrasonic Waves , Nerve Growth Factors
4.
APL Bioeng ; 6(3): 031503, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36061076

ABSTRACT

Platelet concentrates (PCs) are easily obtained from autogenous whole blood after centrifugation and have evolved through three generations of development to include platelet-rich plasma, platelet-rich fibrin, and concentrated growth factor. Currently, PCs are widely used for sinus floor elevation, alveolar ridge preservation, periodontal bone defects, guided bone regeneration, and treatment of gingival recession. More recently, PCs have been leveraged for tissue regeneration to promote oral soft and hard tissue regeneration in implant dentistry and regenerative periodontology. PCs are ideal for this purpose because they have a high concentration of platelets, growth factors, and cytokines. Platelets have been shown to release extracellular vesicles (P-EVs), which are thought to be essential for PC-induced tissue regeneration. This study reviewed the clinical application of PCs and P-EVs for implant surgery and periodontal tissue regeneration.

5.
Colloids Surf B Biointerfaces ; 208: 112090, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34507071

ABSTRACT

In this study, graphene coating was introduced to the modified titanium surface to prevent bacterial infection in oral implants. We modified the titanium surface through SLA and silanization treatment and then coated the surface with graphene. The structure and surface properties were characterized by XPS and SEM. Graphene-coated titanium sheet was incubated with bacteria to test the antibacterial property, which was enhanced by adsorption and release of levofloxacin. We further implanted the graphene-coated titanium sheet loaded with levofloxacin into rabbits to test the antibacterial properties in vivo. The graphene coating exhibited inherent antibacterial properties through membrane stress and the generation of reactive oxygen species (ROS). When loaded with levofloxacin, the graphene coating exhibited a synergistic antibacterial effect and effectively prevented bacterial infections following the implantation. The graphene coating is promising to improve the antibacterial functions of oral implant surfaces to prevent bacterial infection.


Subject(s)
Graphite , Titanium , Animals , Anti-Bacterial Agents/pharmacology , Coated Materials, Biocompatible/pharmacology , Levofloxacin/pharmacology , Rabbits , Staphylococcus aureus , Surface Properties , Titanium/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...