Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Front Med (Lausanne) ; 11: 1269742, 2024.
Article in English | MEDLINE | ID: mdl-38660416

ABSTRACT

Cerebrovascular diseases, including ischemic strokes, hemorrhagic strokes, and vascular malformations, are major causes of morbidity and mortality worldwide. The advancements in neuroimaging techniques have revolutionized the field of cerebrovascular disease diagnosis and assessment. This comprehensive review aims to provide a detailed analysis of the novel imaging methods used in the diagnosis and assessment of cerebrovascular diseases. We discuss the applications of various imaging modalities, such as computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and angiography, highlighting their strengths and limitations. Furthermore, we delve into the emerging imaging techniques, including perfusion imaging, diffusion tensor imaging (DTI), and molecular imaging, exploring their potential contributions to the field. Understanding these novel imaging methods is necessary for accurate diagnosis, effective treatment planning, and monitoring the progression of cerebrovascular diseases.

2.
Crit Rev Oncol Hematol ; 196: 104323, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462148

ABSTRACT

BACKGROUND: Smoking history is a heterogeneous situation for different populations, and numerous studies suggest that smoking cessation is conducive to reduce the mortality of lung cancer. However, no quantitative meta-analysis regarding smoking cessation duration based on different populations has demonstrated it clearly. METHODS: We systematically searched four electronic databases (PubMed, Embase, the Cochrane Central Register of Controlled Trials, and Scoups) till February 2023. Eligible studies reported the association between lung cancer survival and duration of smoking cessation. Additionally, we stratified the study population according to whether they had lung cancer at the time they quit smoking. Studies were pooled with the random-effects model. RESULTS: Out of the 11,361 potential studies initially identified, we included 24 studies involving 969,560 individuals in our analysis. Lung cancer mortality varied across two groups: general quitters and peri-diagnosis quitters. For general quitters, those who had quit smoking for less than 10 years exhibited an RR of 0.64 (95% CI [0.55-0.76]), while those who quit for 10-20 years had an RR of 0.33 (0.25-0.43), over 20 years had an RR of 0.16 (0.11-0.24), and never-smokers had an RR at 0.11 (0.07-0.15). Among peri-diagnosis quitters, the 1-year Overall Survival (OS) showed an RR of 0.80 (0.67-0.96), the 2-year OS had an RR of 0.89 (0.80-0.98), the 3-year OS had an RR of 0.93 (0.84-1.03), and the 5-year OS had an RR of 0.85 (0.76-0.96). CONCLUSIONS: Earlier and longer smoking cessation is associated with reduced lung cancer mortality, no matter in which cessation stage for two different populations.


Subject(s)
Lung Neoplasms , Smoking Cessation , Humans , Lung Neoplasms/etiology , Smoking/adverse effects , Smoking/epidemiology , Tobacco Smoking
3.
Res Sq ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38410458

ABSTRACT

Virus specific PD-1+ TCF-1+ TOX+ stem-like CD8+ T cells are essential for maintaining T cell responses during chronic infection and are also critical for PD-1 directed immunotherapy. In this study we have used the mouse model of chronic LCMV infection to examine when these virus specific stem-like CD8+ T cells are generated during the course of chronic infection and what is the role of antigen in maintaining the stem-like program. We found that these stem-like CD8+ T cells are generated early (day 5) during chronic infection and that antigen is essential for maintaining their stem-like program. This early generation of stem-like CD8+ T cells suggested that the fate commitment to this cell population was agnostic to the eventual outcome of infection and the immune system prepares a priori for a potential chronic infection. Indeed, we found that an identical virus specific stem-cell like CD8+ T cell population was also generated during acute LCMV infection but these cells were lost once the virus was cleared. To determine the fate of these early PD-1+TCF-1+TOX+ stem-like CD8+ T cells that are generated during both acute and chronic LCMV infection we set up two reciprocal adoptive transfer experiments. In the first experiment we transferred day 5 stem-like CD8+ T cells from chronically infected into acutely infected mice and examined their differentiation after viral clearance. We found that these early stem-like CD8+ T cells downregulated canonical markers of the chronic stem-like CD8+ T cells and expressed markers (CD127 and CD62L) associated with central memory CD8+ T cells. In the second experiment, we transferred day 5 stem-like cells from acutely infected mice into chronically infected mice and found that these CD8+ T cells could function like resource cells after transfer into a chronic environment by generating effector CD8+ T cells in both lymphoid and non-lymphoid tissues while also maintaining the number of stem-like CD8+ T cells. These findings provide insight into the generation and maintenance of virus specific stem-like CD8+ T cells that play a critical role in chronic viral infection. In particular, our study highlights the early generation of stem-like CD8+ T cells and their ability to adapt to either an acute or chronic infection. These findings are of broad significance since these novel stem-like CD8+ T cells play an important role in not only viral infections but also in cancer and autoimmunity.

4.
Sci Immunol ; 8(86): eadg0539, 2023 08 04.
Article in English | MEDLINE | ID: mdl-37624909

ABSTRACT

PD-1+TCF-1+ stem-like CD8 T cells act as critical resource cells for maintaining T cell immunity in chronic viral infections and cancer. In addition, they provide the proliferative burst of effector CD8 T cells after programmed death protein 1 (PD-1)-directed immunotherapy. However, it is not known whether checkpoint blockade diminishes the number of these stem-like progenitor cells as effector cell differentiation increases. To investigate this, we used the mouse model of chronic lymphocytic choriomeningitis virus (LCMV) infection. Treatment of chronically infected mice with either αPD-1 or αPD-L1 antibody not only increased effector cell differentiation from the virus-specific stem-like CD8 T cells but also increased their proliferation so their numbers were maintained. The increased self-renewal of LCMV-specific stem-like CD8 T cells was mTOR dependent. We used microscopy to understand the division of these progenitor cells and found that after PD-1 blockade, an individual dividing cell could give rise to a differentiated TCF-1- daughter cell alongside a self-renewing TCF-1+ sister cell. This asymmetric division helped to preserve the number of stem-like cells. Moreover, we found that the PD-1+TCF-1+ stem-like CD8 T cells retained their transcriptional program and their in vivo functionality in terms of responding to viral infection and to repeat PD-1 blockade. Together, our results demonstrate that PD-1 blockade does not deplete the stem-like population despite increasing effector differentiation. These findings have implications for PD-1-directed immunotherapy in humans.


Subject(s)
CD8-Positive T-Lymphocytes , Programmed Cell Death 1 Receptor , Humans , Animals , Mice , Antibodies , Cell Differentiation , Disease Models, Animal
5.
Adv Mater ; 35(32): e2302146, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37145114

ABSTRACT

Despite record-breaking devices, interfaces in perovskite solar cells are still poorly understood, inhibiting further progress. Their mixed ionic-electronic nature results in compositional variations at the interfaces, depending on the history of externally applied biases. This makes it difficult to measure the band energy alignment of charge extraction layers accurately. As a result, the field often resorts to a trial-and-error process to optimize these interfaces. Current approaches are typically carried out in a vacuum and on incomplete cells, hence values may not reflect those found in working devices. To address this, a pulsed measurement technique characterizing the electrostatic potential energy drop across the perovskite layer in a functioning device is developed. This method reconstructs the current-voltage (JV) curve for a range of stabilization biases, holding the ion distribution "static" during subsequent rapid voltage pulses. Two different regimes are observed: at low biases, the reconstructed JV curve is "s-shaped", whereas, at high biases, typical diode-shaped curves are returned. Using drift-diffusion simulations, it is demonstrated that the intersection of the two regimes reflects the band offsets at the interfaces. This approach effectively allows measurements of interfacial energy level alignment in a complete device under illumination and without the need for expensive vacuum equipment.

6.
J Exp Med ; 219(10)2022 10 03.
Article in English | MEDLINE | ID: mdl-35980386

ABSTRACT

Recent studies have defined a novel population of PD-1+ TCF-1+ stem-like CD8 T cells in chronic infections and cancer. These quiescent cells reside in lymphoid tissues, are critical for maintaining the CD8 T cell response under conditions of persistent antigen, and provide the proliferative burst after PD-1 blockade. Here we examined the role of TGF-ß in regulating the differentiation of virus-specific CD8 T cells during chronic LCMV infection of mice. We found that TGF-ß signaling was not essential for the generation of the stem-like CD8 T cells but was critical for maintaining the stem-like state and quiescence of these cells. TGF-ß regulated the unique transcriptional program of the stem-like subset, including upregulation of inhibitory receptors specifically expressed on these cells. TGF-ß also promoted the terminal differentiation of exhausted CD8 T cells by suppressing the effector-associated program. Together, the absence of TGF-ß signaling resulted in significantly increased accumulation of effector-like CD8 T cells. These findings have implications for immunotherapies in general and especially for T cell therapy against chronic infections and cancer.


Subject(s)
Lymphocytic Choriomeningitis , Neoplasms , Animals , CD8-Positive T-Lymphocytes , Lymphocytic choriomeningitis virus/physiology , Mice , Persistent Infection , Programmed Cell Death 1 Receptor , Transforming Growth Factor beta
7.
Insects ; 13(8)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-36005311

ABSTRACT

The tea green leaf hopper, Empoasca onukii Matsuda, is a severe pest of tea plants. Volatile emissions from tea shoots infested by the tea green leafhopper may directly repel insect feeding or attract natural enemies. Many studies have been conducted on various aspects of the tritrophic relationship involving tea plants, tea green leafhoppers and natural enemies. However, mathematic models which could explain the dynamic mechanisms of this tritrophic interaction are still lacking. In the current work, we constructed a realistic and stochastic model with temperature-dependent features to characterize the tritrophic interactions in the tea agroecosystem. Model outputs showed that two leafhopper outbreaks occur in a year, with their features being consistent with field observations. Simulations showed that daily average effective accumulated temperature (EAT) might be an important metric for outbreak prediction. We also showed that application of slow-releasing semiochemicals, as either repellents or attractants, may be highly efficacious for pest biocontrol and can significantly increase tea yields. Furthermore, the start date of applying semiochemicals can be optimized to effectively increase tea yields. The current model qualitatively characterizes key features of the tritrophic interactions and provides critical insight into pest control in tea ecosystems.

8.
Elife ; 112022 08 09.
Article in English | MEDLINE | ID: mdl-35942952

ABSTRACT

Transforming growth factor ß (TGFß) is an important differentiation factor for cytotoxic T lymphocytes (CTLs) and alters the expression levels of several of homing receptors during infection. SMAD4 is part of the canonical signaling network used by members of the transforming growth factor family. For this study, genetically modified mice were used to determine how SMAD4 and TGFß receptor II (TGFßRII) participate in transcriptional programming of pathogen-specific CTLs. We show that these molecules are essential components of opposing signaling mechanisms, and cooperatively regulate a collection of genes that determine whether specialized populations of pathogen-specific CTLs circulate around the body, or settle in peripheral tissues. TGFß uses a canonical SMAD-dependent signaling pathway to downregulate Eomesodermin (EOMES), KLRG1, and CD62L, while CD103 is induced. Conversely, in vivo and in vitro data show that EOMES, KLRG1, CX3CR1, and CD62L are positively regulated via SMAD4, while CD103 and Hobit are downregulated. Intravascular staining also shows that signaling via SMAD4 promotes formation of long-lived terminally differentiated CTLs that localize in the vasculature. Our data show that inflammatory molecules play a key role in lineage determination of pathogen-specific CTLs, and use SMAD-dependent signaling to alter the expression levels of multiple homing receptors and transcription factors with known functions during memory formation.


Subject(s)
Receptor, Transforming Growth Factor-beta Type II , Smad4 Protein , T-Lymphocytes, Cytotoxic , Transforming Growth Factor beta , Animals , Cell Differentiation , Mice , Receptor, Transforming Growth Factor-beta Type II/metabolism , Signal Transduction/genetics , Smad4 Protein/genetics , Smad4 Protein/metabolism , Transforming Growth Factor beta/metabolism
9.
Sensors (Basel) ; 22(8)2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35458807

ABSTRACT

In recent years, with the development of wind energy, the number and scale of wind farms have been developing rapidly. Since offshore wind farms have the advantages of stable wind speed, being clean, renewable, non-polluting, and the non-occupation of cultivated land, they have gradually become a new trend in the wind power industry all over the world. The operation and maintenance of offshore wind power has been developing in the direction of digitization and intelligence. It is of great significance to carry out research on the monitoring, operation, and maintenance of offshore wind farms, which will be of benefit for the reduction of the operation and maintenance costs, the improvement of the power generation efficiency, improvement of the stability of offshore wind farm systems, and the building of smart offshore wind farms. This paper will mainly summarize the monitoring, operation, and maintenance of offshore wind farms, with particular focus on the following points: monitoring of "offshore wind power engineering and biological and environment", the monitoring of power equipment, and the operation and maintenance of smart offshore wind farms. Finally, the future research challenges in relation to the monitoring, operation, and maintenance of smart offshore wind farms are proposed, and the future research directions in this field are explored, especially in marine environment monitoring, weather and climate prediction, intelligent monitoring of power equipment, and digital platforms.


Subject(s)
Energy-Generating Resources , Wind , Climate , Farms , Weather
10.
Foods ; 12(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36613380

ABSTRACT

Foods containing chestnuts (Castanea mollissima Blume) are relatively uncommon, despite the high nutrient and starch contents and purported health benefits. In this study, we examine the flavor-related metabolites, volatile compounds, and amino acids in a traditional glutinous rice fermented beverage supplemented with chestnuts as a fermentation substrate for lactic acid bacteria (LAB). Changes in antioxidant activity towards free radicals and effects on cellular oxidative stress are compared between beverages with or without chestnuts. The fermented chestnut-rice beverage (FCRB) has higher sensory scores and a wider range of volatiles and flavor-related compounds (74 vs. 38 species compounds), but lower amino acid contents, than the traditional fermented glutinous rice beverage (TFRB). In free radical scavenging assays, the FCRB exhibits higher activity than the TFRB in vitro. Furthermore, while neither beverage induces cytotoxity in Caco-2 cells at concentrations up to 2 mg/mL, pretreatment with the FCRB results in lower rates of apoptosis and necrosis and higher overall viability in cells with H2O2-induced oxidative stress compared to pretreatment with the TFRB. The enhanced reactive oxygen species neutralization in vitro and protection against oxidative damage in cells, coupled with increased diversity of volatiles and flavor-related metabolites of LAB, support the addition of chestnuts to enhance flavor profile and antioxidant properties of fermented functional foods.

12.
Biotechnol Lett ; 43(8): 1607-1616, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33937967

ABSTRACT

OBJECTIVES: Development of a system for direct lactose to ethanol fermentation provides a market for the massive amounts of underutilized whey permeate made by the dairy industry. For this system, glucose and galactose metabolism were uncoupled in Saccharomyces cerevisiae by deleting two negative regulatory genes, GAL80 and MIG1, and introducing the essential lactose hydrolase LAC4 and lactose transporter LAC12, from the native but inefficient lactose fermenting yeast Kluyveromyces marxianus. RESULTS: Previously, integration of the LAC4 and LAC12 genes into the MIG1 and NTH1 loci was achieved to construct strain AY-51024M. Low rates of lactose conversion led us to generate the Δmig1Δgal80 diploid mutant strain AY-GM from AY-5, which exhibited loss of diauxic growth and glucose repression, subsequently taking up galactose for consumption at a significantly higher rate and yielding higher ethanol concentrations than strain AY-51024M. Similarly, in cheese whey permeate powder solution (CWPS) during three, repeated, batch processes in a 5L bioreactor containing either 100 g/L or 150 g/L lactose, the lactose uptake and ethanol productivity rates were both significantly greater than that of AY-51024M, while the overall fermentation times were considerably lower. CONCLUSIONS: Using the Cre-loxp system for deletion of the MIG1 and GAL80 genes to relieve glucose repression, and LAC4 and LAC12 overexpression to increase lactose uptake and conversion provides an efficient basis for yeast fermentation of whey permeate by-product into ethanol.


Subject(s)
Fermentation/genetics , Fungal Proteins/genetics , Glucose/metabolism , Lactose , Saccharomyces cerevisiae , Bioreactors/microbiology , Ethanol/metabolism , Kluyveromyces/genetics , Lactose/genetics , Lactose/metabolism , Metabolic Engineering , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Whey/metabolism
13.
Opt Express ; 28(9): 12650-12660, 2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32403758

ABSTRACT

Back-contact architectures for perovskite solar cells eliminate parasitic-absorption losses caused by the electrode and charge collection layers but increase surface reflection due to the high refractive index mismatch at the air/perovskite interface. To mitigate this, a ∼85 nm thick layer of poly(methyl methacrylate) (PMMA), with a refractive index between those of air and perovskite, has been applied as an antireflective coating. Transfer matrix modelling is used to determine the ideal PMMA layer thickness, with UV-Vis spectroscopy measurements used to confirm the increase in absorption that arises through the application of the antireflective coating. The deposition of a thin film of PMMA via spin coating onto a solar cell results in a 20-30% relative increase in short circuit current density and stable power output density.

14.
Biol Pharm Bull ; 42(9): 1491-1499, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31204351

ABSTRACT

Endothelial cell injury and apoptosis induced by oxidative stress serve important roles in many vascular diseases. The repair of endothelial cell vascular injury relies on the function of local endothelial progenitor cells (EPCs). Our previous study indicated that epimedin C, a major flavonoid derived from Herba epimedii (yin yang huo), could promote vascularization by inducing endothelial-like differentiation of mesenchymal stem cells C3H/10T1/2 both in vivo and in vitro. In view of the significant cardiovascular protective effects of Herba epimedii, we detected a protective effect of epimedin C on hydrogen peroxide (H2O2)-induced peroxidation injury in human umbilical vein endothelial cells (HUVECs) and the role of EPC in this process. The results show that epimedin C increased the expression of the stem cell marker, CD34 and PROM1, and subsequently enhanced the expression and function of vascular endothelial growth factor and matrix metalloproteinase (MMP)-2 in local vascular endothelial cells. In conclusion, epimedin C protects H2O2-induced peroxidation injury by enhancing the function of endothelial progenitor HUVEC populations.


Subject(s)
Flavonoids/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Hydrogen Peroxide/toxicity , Oxidative Stress/drug effects , Protective Agents/pharmacology , Apoptosis/drug effects , Cell Survival/drug effects , Cells, Cultured , Human Umbilical Vein Endothelial Cells/metabolism , Humans , L-Lactate Dehydrogenase/metabolism , Vascular Endothelial Growth Factor A/metabolism
15.
Neuroreport ; 29(1): 59-64, 2018 Jan 03.
Article in English | MEDLINE | ID: mdl-29112675

ABSTRACT

Cytosolic phospholipase A2α (cPLA2α) is implicated in the progression of excitotoxic neuronal injury and cerebral ischemia. Previous work suggests that cPLA2α increases aberrant electrophysiologic events through attenuating K channel functions. Nevertheless, which K channels are affected by cPLA2α needs to be determined. Here we examined K channels-mediated electrophysiologic responses in hippocampal CA1 pyramidal neurons from wild-type and cPLA2α mice using simultaneous patch-clamp recording and confocal Ca imaging. After the exposure to the blockers of Ca-sensitive and A-type K channels, all CA1 neurons developed spike broadening and increased dendritic Ca transients. These effects were occluded in CA1 neurons from cPLA2α mice. Therefore, cPLA2α modulates the functions of Ca-sensitive and A-type K channels in neurotoxicity.


Subject(s)
2S Albumins, Plant/metabolism , Hippocampus/cytology , Potassium Channels/metabolism , Pyramidal Cells/metabolism , 2S Albumins, Plant/genetics , 4-Aminopyridine/pharmacology , Action Potentials/drug effects , Action Potentials/genetics , Animals , Apamin/pharmacology , Calcium/metabolism , Electric Stimulation , Electrophysiological Phenomena , In Vitro Techniques , Mice , Mice, Transgenic , Patch-Clamp Techniques , Paxillin/pharmacology , Potassium Channel Blockers/pharmacology , Pyramidal Cells/drug effects
16.
ChemSusChem ; 9(18): 2699-2707, 2016 Sep 22.
Article in English | MEDLINE | ID: mdl-27624589

ABSTRACT

We investigated the influence of moisture on methylammonium lead iodide perovskite (MAPbI3 ) films and solar cells derived from non-stoichiometric precursor mixtures. We followed both the structural changes under controlled air humidity through in situ X-ray diffraction, and the electronic behavior of devices prepared from these films. A small PbI2 excess in the films improved the stability of the perovskite compared to stoichiometric samples. We assign this to excess PbI2 layers at the perovskite grain boundaries or to the termination of the perovskite crystals with Pb and I. In contrast, the MAI-excess films composed of smaller perovskite crystals showed increased electronic disorder and reduced device performance owing to poor charge collection. Upon exposure to moisture followed by dehydration (so-called solvent annealing), these films recrystallized to form larger, highly oriented crystals with fewer electronic defects and a remarkable improvement in photocurrent and photovoltaic efficiency.


Subject(s)
Calcium Compounds/chemistry , Electric Power Supplies , Oxides/chemistry , Solar Energy , Steam , Titanium/chemistry , Amidines/chemistry , Drug Stability , Solvents/chemistry
17.
Chin Med J (Engl) ; 129(14): 1643-51, 2016 Jul 20.
Article in English | MEDLINE | ID: mdl-27411450

ABSTRACT

BACKGROUND: Over the years, the mechanical ventilation (MV) strategy has changed worldwide. The aim of the present study was to describe the ventilation practices, particularly lung-protective ventilation (LPV), among brain-injured patients in China. METHODS: This study was a multicenter, 1-day, cross-sectional study in 47 Intensive Care Units (ICUs) across China. Mechanically ventilated patients (18 years and older) with brain injury in a participating ICU during the time of the study, including traumatic brain injury, stroke, postoperation with intracranial tumor, hypoxic-ischemic encephalopathy, intracranial infection, and idiopathic epilepsy, were enrolled. Demographic data, primary diagnoses, indications for MV, MV modes and settings, and prognoses on the 60th day were collected. Multivariable logistic analysis was used to assess factors that might affect the use of LPV. RESULTS: A total of 104 patients were enrolled in the present study, 87 (83.7%) of whom were identified with severe brain injury based on a Glasgow Coma Scale ≤8 points. Synchronized intermittent mandatory ventilation (SIMV) was the most frequent ventilator mode, accounting for 46.2% of the entire cohort. The median tidal volume was set to 8.0 ml/kg (interquartile range [IQR], 7.0-8.9 ml/kg) of the predicted body weight; 50 (48.1%) patients received LPV. The median positive end-expiratory pressure (PEEP) was set to 5 cmH2O (IQR, 5-6 cmH2O). No PEEP values were higher than 10 cmH2O. Compared with partially mandatory ventilation, supportive and spontaneous ventilation practices were associated with LPV. There were no significant differences in mortality and MV duration between patients subjected to LPV and those were not. CONCLUSIONS: Among brain-injured patients in China, SIMV was the most frequent ventilation mode. Nearly one-half of the brain-injured patients received LPV. Patients under supportive and spontaneous ventilation were more likely to receive LPV. TRIAL REGISTRATION: ClinicalTrials.org NCT02517073 https://clinicaltrials.gov/ct2/show/NCT02517073.


Subject(s)
Brain Injuries/therapy , Respiration, Artificial , Adult , Aged , Brain Injuries, Traumatic/therapy , China , Cross-Sectional Studies , Female , Humans , Hypoxia-Ischemia, Brain/therapy , Intensive Care Units/statistics & numerical data , Male , Middle Aged , Stroke/therapy , Surveys and Questionnaires
18.
ACS Appl Mater Interfaces ; 8(20): 12881-6, 2016 05 25.
Article in English | MEDLINE | ID: mdl-27149009

ABSTRACT

Methylammonium lead iodide (MAPbI3) perovskite based solar cells have recently emerged as a serious competitor for large scale and low-cost photovoltaic technologies. However, since these solar cells contain toxic lead, a sustainable procedure for handling the cells after their operational lifetime is required to prevent exposure of the environment to lead and to comply with international electronic waste disposal regulations. Herein, we report a procedure to remove every layer of the solar cells separately, which gives the possibility to selectively isolate the different materials. Besides isolating the toxic lead iodide in high yield, we show that the PbI2 can be reused for the preparation of new solar cells with comparable performance and in this way avoid lead waste. Furthermore, we show that the most expensive part of the solar cell, the conductive glass (FTO), can be reused several times without any reduction in the performance of the devices. With our simple recycling procedure, we address both the risk of contamination and the waste disposal of perovskite based solar cells while further reducing the cost of the system. This brings perovskite solar cells one step closer to their introduction into commercial systems.

19.
ACS Nano ; 10(6): 5999-6007, 2016 06 28.
Article in English | MEDLINE | ID: mdl-27228558

ABSTRACT

Recently developed organic-inorganic hybrid perovskite solar cells combine low-cost fabrication and high power conversion efficiency. Advances in perovskite film optimization have led to an outstanding power conversion efficiency of more than 20%. Looking forward, shifting the focus toward new device architectures holds great potential to induce the next leap in device performance. Here, we demonstrate a perovskite/perovskite heterojunction solar cell. We developed a facile solution-based cation infiltration process to deposit layered perovskite (LPK) structures onto methylammonium lead iodide (MAPI) films. Grazing-incidence wide-angle X-ray scattering experiments were performed to gain insights into the crystallite orientation and the formation process of the perovskite bilayer. Our results show that the self-assembly of the LPK layer on top of an intact MAPI layer is accompanied by a reorganization of the perovskite interface. This leads to an enhancement of the open-circuit voltage and power conversion efficiency due to reduced recombination losses, as well as improved moisture stability in the resulting photovoltaic devices.

20.
Oncol Lett ; 11(3): 2255-2260, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26998158

ABSTRACT

The proteasome inhibitor bortezomib is indicated for use in the treatment of multiple myeloma (MM) patients. The most common side effects are neurological and gastrointestinal, while severe pulmonary complications are rarely described. The present study reports the case of a 62-year-old man with immunoglobulin (Ig)G-type MM who was treated with bortezomib, thalidomide and dexamethasone. Subsequent to the administration of chemotherapy, the patient developed an acute respiratory distress syndrome. High-resolution computed tomography of the chest showed bilateral diffuse alveolar infiltrations and multiple subpleural lesions. A diagnosis of bortezomib-induced severe pulmonary complications was formed. Systemic corticosteroid therapy led to a rapid improvement in clinical conditions and radiological findings. In addition, the present study reviewed the characteristics, including medical history, clinical manifestations, treatment strategies and outcomes, of all 16 MM patients with bortezomib-induced severe pulmonary complications reported previously in Pubmed. It was indicated that patients who were male, of IgG type, with a relapse status and a previous history of auto-PBSCT had a higher possibility of developing bortezomib-induced severe pulmonary complications. Additionally, a relatively low dose rather than a high dose of corticosteroids could obtain a better outcome.

SELECTION OF CITATIONS
SEARCH DETAIL
...