Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Rev Food Sci Nutr ; : 1-16, 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36448088

ABSTRACT

Lignan is a class of diphenolic compounds that arise from the condensation of two phenylpropanoid moieties. Oilseed and cereal crops (e.g., flaxseed, sesame seed, wheat, barley, oats, rye, etc.) are major sources of plant lignan. Methods for commercial isolation of the lignan secoisolariciresinol diglucoside (SDG) are not well reported, as most publications describing the detection, extraction, and enrichment of SDG use methods that have not been optimized for commercial scale lignan recovery. Simply scaling up laboratory methods would require expensive infrastructure to achieve a marketable yield and reproducible product quality. Therefore, establishing standard protocols to produce SDG and its derivatives on an industrial scale is critical to decrease lignan cost and increase market opportunities. This review summarizes the human health benefits of flaxseed lignan consumption, lignan physicochemical properties, and mammalian lignan metabolism, and describes methods for detecting, extracting, and enriching flaxseed lignan. Refining and optimization of these methods could lead to the development of inexpensive lignan sources for application as an ingredient in medicines, dietary supplements, and other healthy ingredients.

2.
Foods ; 9(5)2020 May 25.
Article in English | MEDLINE | ID: mdl-32466206

ABSTRACT

Flaxseed gum (FG) is a by-product of flax (Linum usitatissimum L.) meal production that is useful as a food thickener, emulsifier, and foaming agent. FG is typically recovered by hot-water extraction from flaxseed hull or whole seed. However, FG includes complex polymer structures that contain bioactive compounds. Therefore, extraction temperature can play an important role in determining its functional properties, solution appearance, and solution stability during storage. These characteristics of FG, including FG quality, determine its commercial value and utility. In this study, FG solution functional properties and storage stability were investigated for solutions prepared at 70 and 98 °C. Solutions of FG prepared at 98 °C had lower initial viscosity than solutions extracted at 70 °C; though the viscosity of these solutions was more stable during storage. Solutions prepared by extraction at both tested temperatures exhibited similar tolerance to 0.1 mol/L salt addition and freeze-thaw cycles. Moreover, the higher extraction temperature produced a FG solution with superior foaming and emulsification properties, and these properties were more stable with storage. Foams and emulsions produced from FG extracted at higher temperatures also had better stability. FG extracted at 98 °C displayed improved stability and consistent viscosity, foamability, and emulsification properties in comparison to solutions prepared at 70 °C. Therefore, the FG solution extracted at 98 °C had more stable properties and, potentially, higher commercial value. This result indicates that FG performance as a commercial food additive can influence food product quality.

3.
Phys Rev E ; 100(6-1): 063110, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31962407

ABSTRACT

With the aid of nondestructive microfocus x-ray computed tomography (CT), we performed three-dimensional (3D) tracer dispersion experiments on randomly unconsolidated packed beds. Plumes of nonreactive sodium iodide solution were point injected into a sodium chloride solvent as a tracer for the evaluation of the dispersion process. The asymptotic dispersion coefficient was obtainable within the experimental scale and was summarized over Péclet numbers from 11.7 to ∼860. Then, the lattice Boltzmann method and moment propagation method were used to elucidate the mechanisms embedded in the dispersion phenomenon. The methods were rigorously verified against the classical Taylor dispersion problem and extended to simulate fluid flow and tracer dispersion in high-resolution 3D digital porous structures from CT. The method of moments, Lagrangian velocity correction function, and dilution index were thoroughly analyzed to evaluate the dispersion behaviors. Numerical simulations revealed ballistic and superdiffusive regimes at the transient times, whereas asymptotic dispersion behaviors appear at longer characteristic times. Besides, the observed transient times unanimously persist over convective length scales of around 12 particles transversely and 16 particles longitudinally. The estimated dispersion coefficients from simulation are in consistence with the experimental result. Furthermore, the simulation also enabled the identification of regimes, including diffusive, power law, and mechanical dispersion. Thus, the proposed experimental and computational schemes are of practical means to study dispersion behaviors by direct pore scale imaging and modeling.

4.
Colloids Surf B Biointerfaces ; 159: 605-612, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28858663

ABSTRACT

The first example of the self-assembly and lectin binding properties of photoswitchable glycodendrimer micelles is reported. Light-addressable micelles were assembled from a library of 12 amphiphilic Janus glycodendrimers composed of variable carbohydrate head groups and hydrophobic tail groups linked to an azobenzene core. Spontaneous association in water gave cylindrical micelles with uniform size distribution as determined by dynamic light scattering (DLS) and small angle neutron scattering (SANS). Trans-cis photoisomerization of the azobenzene dendrimer core was used to probe the self-assembly behaviour and lectin binding properties of cylindrical micelles, revealing moderate-to-potent inhibition of lectins LecA and LecB from Pseudomonas aeruginosa.


Subject(s)
Adhesins, Bacterial/metabolism , Dendrimers/chemistry , Lectins/chemistry , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/metabolism , Azo Compounds/chemistry , Azo Compounds/pharmacology , Dynamic Light Scattering , Hydrophobic and Hydrophilic Interactions , Lectins/antagonists & inhibitors , Lectins/metabolism , Micelles , Scattering, Small Angle
5.
Carbohydr Res ; 439: 1-8, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28011438

ABSTRACT

Cryopreservation is an important technique employed for the storage and preservation of biological tissues and cells. The limited effectiveness and significant toxicity of conventionally-used cryoprotectants, such as DMSO, have prompted efforts toward the rational design of less toxic alternatives, including carbohydrate-based surfactants. In this paper, we report the modular synthesis and ice recrystallization inhibition (IRI) activity of a library of variably substituted, carbohydrate-based fluorosurfactants. Carbohydrate-based fluorosurfactants possessed a variable mono- or disaccharide head group appended to a hydrophobic fluoroalkyl-substituted azobenzene tail group. Light-addressable fluorosurfactants displayed weak-to-moderate IRI activity that could be tuned through selection of carbohydrate head group, position of the trifluoroalkyl group on the azobenzene ring, and isomeric state of the azobenzene tail fragment.


Subject(s)
Cryopreservation , Cryoprotective Agents/chemistry , Ice/analysis , Small Molecule Libraries/chemistry , Surface-Active Agents/chemistry , Azo Compounds/chemistry , Cryoprotective Agents/chemical synthesis , Crystallization , Disaccharides/chemistry , Halogenation , Light , Molecular Structure , Monosaccharides/chemistry , Photochemical Processes , Small Molecule Libraries/chemical synthesis , Structure-Activity Relationship , Surface-Active Agents/chemical synthesis
6.
Chem Sci ; 7(11): 6628-6634, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-28567253

ABSTRACT

Naturally occurring and synthetic carbohydrate amphiphiles have emerged as a promising class of antimicrobial and antiadhesive agents that act through a number of dynamic and often poorly understood mechanisms. In this paper, we provide the first report on the application of azobenzene trans-cis photoisomerization for effecting spatial and temporal control over bacterial growth and biofilm formation using carbohydrate-based surfactants. Photocontrollable surface tension studies and small angle neutron scattering (SANS) revealed the diverse geometries and dimensions of self-assemblies (micelles) made possible through variation of the head group and UV-visible light irradiation. Using these light-addressable amphiphiles, we demonstrate optical control over the antibacterial activity and formation of biofilms against multi-drug resistant (MDR) Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus (MRSA) and Gram-negative Escherichia coli. To probe the mechanism of bioactivity further, we evaluated the impact of trans-cis photoisomerization in these surfactants on bacterial motility and revealed photomodulated enhancement in swarming motility in P. aeruginosa. These light-responsive amphiphiles should attract significant interest as a new class of antibacterial agents and as investigational tools for probing the complex mechanisms underpinning bacterial adhesion and biofilm formation.

7.
Org Biomol Chem ; 13(8): 2216-25, 2015 Feb 28.
Article in English | MEDLINE | ID: mdl-25573270

ABSTRACT

Carbohydrate-protein binding is a supramolecular recognition process that underpins myriad biological events. However, the precise conformational and configurational requirements for biomolecular recognition are often poorly understood, since such phenomena often occur in a strongly spatiotemporal manner. Photoswitchable glycoconjugates have emerged as promising investigational tools for probing carbohydrate-protein recognition and for controlling bacterial adhesion. Reversible photoisomerisation, in particular that of azobenzene glycoconjugates, has also been exploited as a promising strategy for controlling supramolecular self-assembly and macroscopic properties, thereby facilitating the development of light responsive carbohydrate-based materials. The following review will highlight the recent advances in the design and applications of photoswitchable glycoconjugates, paying particular attention to the application of light as a stimulus for modulating protein and cellular adhesion, amphiphilicity and supramolecular assembly of carbohydrate-based materials.


Subject(s)
Glycoconjugates/chemical synthesis , Glycoconjugates/radiation effects , Light , Azo Compounds/chemistry , Glycoconjugates/chemistry , Photochemical Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...