Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Prot ; 80(7): 1145-1151, 2017 07.
Article in English | MEDLINE | ID: mdl-28598203

ABSTRACT

In this study, we investigated the prevalence and fluoroquinolone (FQ) resistance mechanisms in Escherichia coli isolated from swine fecal samples. E. coli isolates were collected from 171 (72.2%) of 237 swine fecal samples. Of these, 59 isolates (34.5%) were confirmed as FQ-resistant E. coli by the disk diffusion method. Of the FQ-resistant isolates, three major FQ resistance mechanisms were investigated. Of the 59 isolates, plasmid-mediated quinolone resistance genes were detected in 9 isolates (15.3%). Efflux pump activity was found in 56 isolates (94.9%); however, this was not correlated with the increased FQ resistance measured by determining the MIC. Point mutations in quinolone resistance-determining regions were the main cause of FQ resistance. All 59 ciprofloxacin-resistant isolates had mutations in quinolone resistance-determining regions; of these 59 isolates, all (100%) had mutations in gyrA, 58 (98.3%) had mutations in parC, 22 (37.3%) had mutations in parE, and none had mutations in gyrB. The predominant mutation type was double mutation in gyrA (Ser83Leu plus mutation in aspartic acid 87), and all FQ-resistant isolates (except one) that had mutations in parC or parE also had double mutations in gyrA. Importantly, the frequencies of multidrug-resistant and extended-spectrum ß-lactamase-producing E. coli were significantly higher in the high ciprofloxacin MIC group in this study. Compared with previous studies in Korea, the prevalence of FQ resistance and plasmid-mediated quinolone resistance genes had increased considerably in swine. Although the use of FQ as a feed additive is prohibited in Korea, use for self-treatment and therapeutic purposes has been increasing, which may be responsible for the higher FQ resistance rate observed in this study. Therefore, prudent use of FQ on animal farms is warranted to reduce the evolution of FQ-resistant bacteria in the animal industry.


Subject(s)
Drug Resistance, Bacterial , Escherichia coli/drug effects , Feces/microbiology , Fluoroquinolones/pharmacology , Animals , Anti-Bacterial Agents , DNA Gyrase , Escherichia coli/isolation & purification , Escherichia coli Proteins , Microbial Sensitivity Tests , Mutation , Prevalence , Republic of Korea , Swine
2.
J Vet Sci ; 18(4): 449-456, 2017 Dec 31.
Article in English | MEDLINE | ID: mdl-28385014

ABSTRACT

The present study investigated the prevalence and mechanisms of fluoroquinolone (FQ)/quinolone (Q) resistance in Escherichia (E.) coli isolates from companion animals, pet-owners, and non-pet-owners. A total of 63 E. coli isolates were collected from 104 anal swab samples, and 27 nalidixic acid (NA)-resistant isolates were identified. Of those, 10 showed ciprofloxacin (CIP) resistance. A plasmid-mediated Q resistance gene was detected in one isolate. Increased efflux pump activity, as measured by organic solvent tolerance assay, was detected in 18 NA-resistant isolates (66.7%), but was not correlated with an increase in minimum inhibitory concentration (MIC). Target gene mutations in Q resistance-determining regions (QRDRs) were the main cause of (FQ)Q resistance in E. coli. Point mutations in QRDRs were detected in all NA-resistant isolates, and the number of mutations was strongly correlated with increased MIC (R = 0.878 for NA and 0.954 for CIP). All CIP-resistant isolates (n = 10) had double mutations in the gyrA gene, with additional mutations in parC and parE. Interestingly, (FQ)Q resistance mechanisms in isolates from companion animals were the same as those in humans. Therefore, prudent use of (FQ)Q in veterinary medicine is warranted to prevent the dissemination of (FQ)Q-resistant bacteria from animals to humans.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/physiology , Escherichia coli/drug effects , Nalidixic Acid/pharmacology , Pets/microbiology , Animals , Drug Resistance, Bacterial/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Ownership
SELECTION OF CITATIONS
SEARCH DETAIL
...