Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Urology ; 179: 194-195, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37468427
2.
Urology ; 179: 188-195, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37315592

ABSTRACT

OBJECTIVE: To develop two intelligent diagnosis models of detrusor overactivity (DO) based on deep learning to assist doctors no longer heavily rely on visual observation of urodynamic study (UDS) curves. METHODS: UDS curves of 92 patients were collected during 2019. We constructed two DO event recognition models based on convolutional neural network (CNN) with 44 samples, and tested the model performance with the remaining 48 samples by comparing other four classical machine learning models. During the testing phase, we developed a threshold screening strategy to quickly filter out suspected DO event segments in each patient's UDS curve. If two or more DO event fragments are determined to be DO by the diagnostic model, the patient is diagnosed as having DO. RESULTS: We extracted 146 DO event samples and 1863 non-DO event samples from the UDS curves of 44 patients to train CNN models. Through 10-fold cross-validation, the training accuracy and validation accuracy of our models achieved the highest accuracy. In the model testing phase, we used a threshold screening strategy to quickly screen out the suspected DO event samples in the UDS curve of another 48 patients, and then input them into the trained models. Finally, the diagnostic accuracy of patients without DO and patients with DO was 78.12% and 100%, respectively. CONCLUSION: Under the available data, the accuracy of the DO diagnostic model based on CNN is satisfactory. With the increase of the amount of data, the deep learning model is likely to have better performance. CLINICAL TRIAL REGISTRATION: This experiment was certified by the Chinese Clinical Trial Registry (ChiCTR2200063467).


Subject(s)
Deep Learning , Physicians , Humans , Pilot Projects , Neural Networks, Computer , Machine Learning
3.
J Biol Chem ; 292(52): 21662-21675, 2017 12 29.
Article in English | MEDLINE | ID: mdl-29123030

ABSTRACT

The degenerin/epithelial sodium channel (DEG/ENaC) superfamily of ion channels contains subfamilies with diverse functions that are fundamental to many physiological and pathological processes, ranging from synaptic transmission to epileptogenesis. The absence in mammals of some DEG/ENaCs subfamily orthologues such as FMRFamide peptide-activated sodium channels (FaNaCs), which have been identified only in mollusks, indicates that the various subfamilies diverged early in evolution. We recently reported that the nonproton agonist 2-guanidine-4-methylquinazoline (GMQ) activates acid-sensing ion channels (ASICs), a DEG/ENaC subfamily mainly in mammals, in the absence of acidosis. Here, we show that GMQ also could directly activate the mollusk-specific FaNaCs. Differences in ion selectivity and unitary conductance and effects of substitutions at key residues revealed that GMQ and FMRFamide activate FaNaCs via distinct mechanisms. The presence of two activation mechanisms in the FaNaC subfamily diverging early in the evolution of DEG/ENaCs suggested that dual gating is an ancient feature in this superfamily. Notably, the GMQ-gating mode is still preserved in the mammalian ASIC subfamily, whereas FMRFamide-mediated channel gating was lost during evolution. This implied that GMQ activation may be essential for the functions of mammalian DEG/ENaCs. Our findings provide new insights into the evolution of DEG/ENaCs and may facilitate the discovery and characterization of their endogenous agonists.


Subject(s)
Epithelial Sodium Channels/physiology , FMRFamide/metabolism , FMRFamide/physiology , Acid Sensing Ion Channels/metabolism , Animals , CHO Cells , Cricetulus , Crystallography, X-Ray/methods , Degenerin Sodium Channels/physiology , Guanidines/pharmacology , Hydrogen-Ion Concentration , Ion Channel Gating/physiology , Ligands , Mollusca/metabolism , Oocytes/physiology , Peptides/pharmacology , Quinazolines/pharmacology , Xenopus laevis
4.
Sensors (Basel) ; 17(5)2017 May 18.
Article in English | MEDLINE | ID: mdl-28524088

ABSTRACT

The operating condition of rolling bearings affects productivity and quality in the rotating machine process. Developing an effective rolling bearing condition monitoring approach is critical to accurately identify the operating condition. In this paper, a hybrid generalized hidden Markov model-based condition monitoring approach for rolling bearings is proposed, where interval valued features are used to efficiently recognize and classify machine states in the machine process. In the proposed method, vibration signals are decomposed into multiple modes with variational mode decomposition (VMD). Parameters of the VMD, in the form of generalized intervals, provide a concise representation for aleatory and epistemic uncertainty and improve the robustness of identification. The multi-scale permutation entropy method is applied to extract state features from the decomposed signals in different operating conditions. Traditional principal component analysis is adopted to reduce feature size and computational cost. With the extracted features' information, the generalized hidden Markov model, based on generalized interval probability, is used to recognize and classify the fault types and fault severity levels. Finally, the experiment results show that the proposed method is effective at recognizing and classifying the fault types and fault severity levels of rolling bearings. This monitoring method is also efficient enough to quantify the two uncertainty components.

5.
J Biol Chem ; 292(18): 7619-7635, 2017 05 05.
Article in English | MEDLINE | ID: mdl-28302727

ABSTRACT

P2X receptors are ATP-gated trimeric channels with important roles in diverse pathophysiological functions. A detailed understanding of the mechanism underlying the gating process of these receptors is thus fundamentally important and may open new therapeutic avenues. The left flipper (LF) domain of the P2X receptors is a flexible loop structure, and its coordinated motions together with the dorsal fin (DF) domain are crucial for the channel gating of the P2X receptors. However, the mechanism underlying the crucial role of the LF domain in the channel gating remains obscure. Here, we propose that the ATP-induced allosteric changes of the LF domain enable it to foster intersubunit physical couplings among the DF and two lower body domains, which are pivotal for the channel gating of P2X4 receptors. Metadynamics analysis indicated that these newly established intersubunit couplings correlate well with the ATP-bound open state of the receptors. Moreover, weakening or strengthening these physical interactions with engineered intersubunit metal bridges remarkably decreased or increased the open probability of the receptors, respectively. Further disulfide cross-linking and covalent modification confirmed that the intersubunit physical couplings among the DF and two lower body domains fostered by the LF domain at the open state act as an integrated structural element that is stringently required for the channel gating of P2X4 receptors. Our observations provide new mechanistic insights into P2X receptor activation and will stimulate development of new allosteric modulators of P2X receptors.


Subject(s)
Ion Channel Gating/physiology , Molecular Dynamics Simulation , Receptors, Purinergic P2X4/chemistry , HEK293 Cells , Humans , Protein Domains , Receptors, Purinergic P2X4/genetics , Receptors, Purinergic P2X4/metabolism
6.
J Biol Chem ; 291(15): 7990-8003, 2016 Apr 08.
Article in English | MEDLINE | ID: mdl-26865631

ABSTRACT

Significant progress has been made in understanding the roles of crucial residues/motifs in the channel function of P2X receptors during the pre-structure era. The recent structural determination of P2X receptors allows us to reevaluate the role of those residues/motifs. Residues Arg-309 and Asp-85 (rat P2X4 numbering) are highly conserved throughout the P2X family and were involved in loss-of-function polymorphism in human P2X receptors. Previous studies proposed that they participated in direct ATP binding. However, the crystal structure of P2X demonstrated that those two residues form an intersubunit salt bridge located far away from the ATP-binding site. Therefore, it is necessary to reevaluate the role of this salt bridge in P2X receptors. Here, we suggest the crucial role of this structural element both in protein stability and in channel gating rather than direct ATP interaction and channel assembly. Combining mutagenesis, charge swap, and disulfide cross-linking, we revealed the stringent requirement of this salt bridge in normal P2X4 channel function. This salt bridge may contribute to stabilizing the bending conformation of the ß2,3-sheet that is structurally coupled with this salt bridge and the α2-helix. Strongly kinked ß2,3 is essential for domain-domain interactions between head domain, dorsal fin domain, right flipper domain, and loop ß7,8 in P2X4 receptors. Disulfide cross-linking with directions opposing or along the bending angle of the ß2,3-sheet toward the α2-helix led to loss-of-function and gain-of-function of P2X4 receptors, respectively. Further insertion of amino acids with bulky side chains into the linker between the ß2,3-sheet or the conformational change of the α2-helix, interfering with the kinked conformation of ß2,3, led to loss-of-function of P2X4 receptors. All these findings provided new insights in understanding the contribution of the salt bridge between Asp-85 and Arg-309 and its structurally coupled ß2,3-sheet to the function of P2X receptors.


Subject(s)
Receptors, Purinergic P2X4/chemistry , Receptors, Purinergic P2X4/metabolism , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Disulfides/chemistry , HEK293 Cells , Humans , Molecular Dynamics Simulation , Molecular Sequence Data , Protein Stability , Protein Structure, Secondary , Salts/chemistry , Sequence Alignment
7.
J Biol Chem ; 291(14): 7571-82, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26867576

ABSTRACT

FMRFamide (Phe-Met-Arg-Phe-NH2)-activated sodium channel (FaNaC) is an amiloride-sensitive sodium channel activated by endogenous tetrapeptide in invertebrates, and belongs to the epithelial sodium channel/degenerin (ENaC/DEG) superfamily. The ENaC/DEG superfamily differs markedly in its means of activation, such as spontaneously opening or gating by mechanical stimuli or tissue acidosis. Recently, it has been observed that a number of ENaC/DEG channels can be activated by small molecules or peptides, indicating that the ligand-gating may be an important feature of this superfamily. The peptide ligand control of the channel gating might be an ancient ligand-gating feature in this superfamily. Therefore, studying the peptide recognition of FaNaC channels would advance our understanding of the ligand-gating properties of this superfamily of ion channels. Here we demonstrate that Tyr-131, Asn-134, Asp-154, and Ile-160, located in the putative upper finger domain ofHelix aspersaFaNaC (HaFaNaC) channels, are key residues for peptide recognition of this ion channel. Two HaFaNaC specific-insertion motifs among the ENaC/DEG superfamily, residing at the putative α4-α5 linker of the upper thumb domain and the α6-α7 linker of the upper knuckle domain, are also essential for the peptide recognition of HaFaNaC channels. Chemical modifications and double mutant cycle analysis further indicated that those two specific inserts and key residues in the upper finger domain together participate in peptide recognition of HaFaNaC channels. This ligand recognition site is distinct from that of acid-sensing ion channels (ASICs) by a longer distance between the recognition site and the channel gate, carrying useful information about the ligand gating and the evolution of the trimeric ENaC/DEG superfamily of ion channels.


Subject(s)
Ion Channel Gating/physiology , Peptides/metabolism , Sodium Channels/metabolism , Animals , CHO Cells , Cricetinae , Cricetulus , HEK293 Cells , Humans , Peptides/genetics , Protein Structure, Tertiary , Sodium Channels/genetics
8.
Int J Med Sci ; 12(11): 848-52, 2015.
Article in English | MEDLINE | ID: mdl-26640403

ABSTRACT

BACKGROUND: Opioid induced bowel dysfunction is the most common side effect of preoperatively administrated morphine, fentanyl and its derivative. However, the influence of dezocine on intestinal mobility is rarely reported. This study was designed to investigate the effects of dezocine, morphine and sufentanil on both intestinal smooth muscle contraction and propulsion in rats. METHODS: Contractile tension and frequency of isolated rat small intestine smooth muscle were measured using tension transducer after incubation with different concentrations of dezocine, morphine and sufentanil. The propulsive rate of methylene blue in rat intestinal tract was measured 30 minutes after intraperitoneal injection of morphine, sufentanil and dezocine. Percent of change in contractile tension and contraction frequency compared to baseline level were calculated to evaluate muscle contraction. Propulsive rate of methylene blue was calculated as the percentage of methylene blue moving distance in intestinal tract compared to the length of the small intestine. RESULTS: Morphine and sufentanil significantly increased the contractile tension of isolated small intestine smooth muscle at high doses. The contraction frequency did not change significantly among the 3 tested doses. Increasing the dose of dezocine from 1.7 mg.L(-1) to 10.2 mg.L(-1) did not change either the contractile tension or the contraction frequency. The propulsive rate of methylene blue in intestinal tract was significantly decreased after the treatment with morphine, sufentanil and dezocine (45.6%, 43.7%, and 42.1% respectively) compared to control group(57.1%), while the difference among the 3 drug groups were not significant. CONCLUSION: Morphine and sufentanil may dose dependently increase the contractile tension and contraction ability of isolated rat small intestine smooth muscle, while dezocine has no significant effect on intestine smooth muscle contraction. However, all these opioids might impair small intestinal propulsion.


Subject(s)
Analgesics, Opioid/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Gastrointestinal Motility/drug effects , Morphine/pharmacology , Sufentanil/pharmacology , Tetrahydronaphthalenes/pharmacology , Animals , Dose-Response Relationship, Drug , Male , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Muscle, Smooth/physiology , Rats , Rats, Sprague-Dawley
9.
Se Pu ; 33(6): 647-51, 2015 Jun.
Article in Chinese | MEDLINE | ID: mdl-26536769

ABSTRACT

Six 3α-acyloxy-6ß-acetoxyltropane compounds were enantioseparated by high performance liquid chromatography with amylose-based chiral stationary phase Chiralpak AD and cellulose-based chiral stationary phase Chiralcel OD-H in the normal phase mode, using various mixtures of n-hexane-isopropanol as mobile phases. The enantiomers 6 were completely separated on a Chiralpak AD column. While the enantiomers 1, 4 and 3 got complete, baseline and basic separation respectively on a Chiralcel OD-H column. However, the enantiomers 6 were partially separated on the Chiralcel OD-H column and enantiomers 1 could not be separated on the Chiralpak AD column. This indicated that the cave structure of chiral stationary phase exerted great effect on the resolutions. The enantiomers 5 could not be separated on both of the chiral stationary phases. The main possible mechanism of chiral resolution involves in spatial adaptability and molecular interactions between chiral stationary phases and compounds. The substituents in C-3α position of 3α-acyloxy-6ß-acetoxyltropane compounds play an important role in spatial adaptability. And it was suggested that the steric hindrance effect of the substituent in C-3α position was the key factor of determining the selective recognition of chiral stationary phase to the enantiomers of 3α-acyloxy-6ß-acetoxyltropane compounds. Besides, the molecular interaction, such as π-π interaction, also exerts great influence to the chiral resolution. This study provides a reference for the enantioseparation of many other tropane derivatives.

10.
Bioorg Med Chem ; 21(5): 1234-9, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23375092

ABSTRACT

Both enantiomers of 3α-acyloxy-6ß-acetoxyltropane derivatives 1-4 were prepared respectively and underwent functional studies and radioreceptor binding assays. 6S Enantiomers showed obvious muscarinic M3, M2 antagonistic activity, while the 6R ones elicited little muscarinic activity by functional studies. Besides, the affinity of 6S enantiomers to muscarinic M3 receptors of rat submandibulary gland, M2 receptors of rat left atria was much larger than that of corresponding 6R enantiomers. All these pharmalogical results indicated 6S configuration was favorable for 3α-acyloxy-6ß-acetoxyltropane derivatives to bind with muscarinic M3 or M2 receptors and elicited antagonistic activity. Furthermore, the muscarinic M3 activity and subtype selectivity (M3/M2) of 6S enantiomers could be improved by increasing the electron density of carbonyl oxygen or introducing methylene group between the carbonyl and phenyl ring in C-3α position. Understanding the effect of absolute configuration on activity, subtype selectivity (M3/M2) of 3α-acyloxy-6ß-acetoxyltropane derivatives will provide the clues for designing muscarinic M3 antagonists with high activity and low side effects or toxicity.


Subject(s)
Muscarinic Antagonists/chemistry , Receptor, Muscarinic M3/antagonists & inhibitors , Tropanes/chemistry , Animals , Female , Guinea Pigs , Heart Atria/drug effects , Ileum/drug effects , Male , Muscarinic Antagonists/chemical synthesis , Muscarinic Antagonists/pharmacology , Radioligand Assay , Rats , Receptor, Muscarinic M2/antagonists & inhibitors , Receptor, Muscarinic M2/metabolism , Receptor, Muscarinic M3/metabolism , Structure-Activity Relationship , Tropanes/chemical synthesis , Tropanes/pharmacology
11.
Am J Physiol Lung Cell Mol Physiol ; 299(4): L483-92, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20639352

ABSTRACT

TNFα, a proinflammatory cytokine known to be involved in the pathogenesis of allergic asthma, has been shown to induce hyperalgesia in somatic tissue via a sensitizing effect on dorsal root ganglion neurons expressing transient receptor potential vanilloid type 1 receptor (TRPV1). Because TRPV1-expressing pulmonary sensory neurons play an important role in regulating airway function, this study was carried out to determine whether TNFα alters the sensitivity of these neurons to chemical activators. Responses of isolated nodose and jugular ganglion neurons innervating the rat lungs were determined by measuring the transient increase in intracellular Ca(2+) concentration ([Ca(2+)](i)). Our results showed the following. 1) A pretreatment with TNFα (50 ng/ml) for ∼24 h increased significantly the peak Δ[Ca(2+)](i) evoked by capsaicin (Cap) in these neurons. A pretreatment with the same concentration of TNFα for a longer duration (∼48 h) did not further increase the response, but pretreatment for a shorter duration (1 h) or with a lower concentration (25 ng/ml, 24 h) failed to enhance the Cap sensitivity. 2) The same TNFα pretreatment also induced similar but less pronounced and less uniform increases in the responses to acid (pH 6.5-5.5), 2-aminoethoxydiphenyl borate (2-APB), a common activator of TRPV1, V2, and V3 channels, and allyl isothiocyanate (AITC), a selective activator of TRPA1 channel. 3) In sharp contrast, the responses to ATP, ACh, and KCl were not affected by TNFα. 4) The TNFα-induced hypersensitivity to Cap was not prevented by pretreatment with indomethacin (30 µM). 5) The immunoreactivity to both TNF receptor types 1 and 2 were detected in rat vagal pulmonary sensory neurons. In conclusion, prolonged treatment with TNFα induces a pronounced potentiating effect on the responses of isolated pulmonary sensory neurons to TRPV1 activators. This action of TNFα may contribute in part to the airway hyperresponsiveness induced by this cytokine.


Subject(s)
Calcium/metabolism , Capsaicin/pharmacology , Lung/drug effects , Sensory Receptor Cells/drug effects , TRPV Cation Channels/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Animals , Cells, Cultured , Lung/cytology , Lung/metabolism , Nodose Ganglion/cytology , Nodose Ganglion/drug effects , Nodose Ganglion/metabolism , Rats , Rats, Sprague-Dawley , Sensory Receptor Cells/cytology , Sensory Receptor Cells/metabolism , Sensory System Agents/pharmacology , Vagus Nerve/cytology , Vagus Nerve/drug effects , Vagus Nerve/metabolism
12.
Neurosci Lett ; 450(1): 12-7, 2009 Jan 23.
Article in English | MEDLINE | ID: mdl-19027050

ABSTRACT

In micturition control, the roles of ionotropic glutamate (iGlu) receptors NMDA and AMPA are well established, whereas little is known about the function of metabotropic glutamate (mGlu) receptors. Since antagonists for mGlu5 receptors are efficacious in animal models of inflammatory and neuropathic pain, we examined whether mGlu5 receptors play a role in the voiding reflex and bladder nociception and, if so, via centrally or peripherally localized receptors. The mGlu5 receptor antagonist MPEP dose-dependently increased the micturition threshold (MT) volume in the volume-induced micturition reflex (VIMR) model in anesthetized rats. Following doses of 5.2, 15.5 and 51.7micromol/kg of MPEP (intraduodenal), the MT was increased by 24.7+/-5.0%, 97.2+/-12.5% (P<0.01) and 128.0+/-28.3% (P<0.01) from the baseline, respectively (n=4-5; compared with 0.8+/-9.1% in the vehicle group). Infusing MPEP (0.3, 1mM) directly into the bladder also raised MT. However, the efficacious plasma concentrations of MPEP following intravesical dosing were similar to that after intraduodenal dosing (EC(50) of 0.11 and 0.27microM, respectively, P>0.05). MPEP also dose-dependently attenuated the visceromotor responses (VMR, total number of abdominal EMG spikes during phasic bladder distension) in anesthetized rats. The VMR was decreased to 1332.4+/-353.9 from control of 2886.5+/-692.2 spikes/distension (n=6, P<0.01) following MPEP (10micromol/kg, iv). Utilizing the isolated mouse bladder/pelvic nerve preparation, we found that neither MPEP (up to 3microM) nor MTEP (up to 10microM) affected afferent discharge in response to bladder distension (n=4-6). In contrast, MPEP attenuated the responses of the mesenteric nerves to distension of the mouse jejunum in vitro. These data suggest that mGlu5 receptors play facilitatory roles in the processing of afferent input from the urinary bladder, and that central rather than peripheral mGlu5 receptors appear to be responsible.


Subject(s)
Pain/physiopathology , Receptors, Metabotropic Glutamate/metabolism , Urinary Bladder/physiology , Urination/physiology , Action Potentials , Analysis of Variance , Animals , Dose-Response Relationship, Drug , Female , In Vitro Techniques , Jejunum/innervation , Jejunum/physiology , Mice , Models, Biological , Pyridines/administration & dosage , Rats , Rats, Sprague-Dawley , Receptor, Metabotropic Glutamate 5 , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Reflex , Reflex, Stretch/drug effects , Thiazoles/administration & dosage , Urinary Bladder/drug effects , Urinary Bladder/innervation , Urination/drug effects
13.
Article in Chinese | MEDLINE | ID: mdl-21162290

ABSTRACT

AIM: To observe the effect of LPC on the pacemaker current I(f) in ischemic myocardium and if the effect could be reversed by ISO. METHODS: By using two microelectrode voltage clamp technique to measure and compare the amplitude of I(f) of ischemic myocardium in the presence of LPC and LPC add ISO. RESULTS: Ischemia decreased the amplitude of I(f) at all membrane potential levels. Adding LPC 2 x 10(-5) mol/L to the ischemia-like solution, the amplitude of I(f) decreased further (n = 5, P < 0.05), it means that LPC aggravated the inhibitory effect of "ischemia" on the pacemaker activity. Adding LPC 2 x 10(-5) mol/L and ISO 1 x 10(-6) mol/L together to the ischemia-like solution, the amplitude of I(f) increased significantly at membrane potential -90 mV to - 120 mV (n = 8, P < 0.05) compared with ischemia condition, but still did not reach the levels before ischemia. CONCLUSION: In acute myocardial ischemia condition, toxic metabolite LPC accentuated its inhibitory effect on pacemaker current I(f), a local release and accumulation of catecholamine could not completely reverse their inhibitory effect.


Subject(s)
Isoproterenol/metabolism , Lysophosphatidylcholines/pharmacology , Membrane Potentials/drug effects , Myocardial Ischemia/physiopathology , Animals , Microelectrodes , Myocardial Ischemia/metabolism , Myocardium , Patch-Clamp Techniques , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL
...