Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 49(26): 9035-9047, 2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32567620

ABSTRACT

This paper proposes a novel µ-hydroxo-bridged dinuclear macrocyclic zinc complex, {[Zn(C10H20N8)]2(OH)}(BF4)3. The structure was determined by X-ray crystallography: Monoclinic, C2/c, a = 25.4632(6), b = 10.9818(3), c = 15.7522(4) Å, Z = 8, R1 = 0.0233, wR2 = 0.0557, based on reflections I > 2σ(I). The complex was successfully reacted with graphene oxide to form a µ-hydroxo-bridged dinuclear macrocyclic Zn complex/reduced graphene oxide composite. To evenly disperse the Zn- and N-rich complex onto the surface of the reduced graphene oxide, and to enhance the electrocatalytic property of the graphene composites, a soluble molecular grafting method was used here. The graphene-based composites were applied as the counter electrodes (CEs) of dye-sensitized solar cells. Current density-voltage measurements revealed that the conversion efficiency of the GO/Zn (1 : 10) sample was 7.78%, which was better than that of Pt CE (7.49%). GO/Zn (1 : 10) CE exhibited the lowest impedance (RCE = 9.90 Ω), which was better than that of Pt CE (RCE = 66.1 Ω), showing that GO/Zn CEs can reduce the impedance at the CE/electrolyte interface. The proposed method is simple, and the composite materials can potentially replace conventional Pt, optimizing efficiency and reducing production cost.

2.
Ultrason Sonochem ; 59: 104696, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31430655

ABSTRACT

We report a novel electrochemical sensor for the sensitive and selective determination of the antipsychotic drug chlorpromazine (CPZ) based on the iron (Fe) nanoparticles-loaded graphene oxide (GO-Fe)/three dimensional (3D) honeycomb-like zinc oxide (ZnO) nanohybrid modified screen printed carbon electrode (SPCE). The 3D hierarchical honeycomb-like ZnO was synthesized using a novel aqueous hydrothermal method and the GO-Fe/ZnO nanohybrid was prepared based on an inexpensive and fast sonochemical method using a high-intensity ultrasonic bath (Delta DC200H, 200 W, 40 KHz). Characterizations including scanning electron microscopy, elemental mapping, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy were carried out as part of this work. The electrocatalytic oxidation behavior of CPZ at various electrodes was investigated using the cyclic voltammetry technique, through which the GO-Fe/ZnO modified SPCE was identified as the best performing electrode. The quantitative determination of CPZ was then performed using the differential pulse voltammetry technique. The as-prepared GO-Fe/ZnO/SPCE sensor exhibited a quick and sensitive response towards the oxidation of CPZ with linear concentration ranges from 0.02 to 172.74 µM and 222.48 to 1047.74 µM. The modified SPCE sensor displayed a low detection limit (LOD) of 0.02 µM and a high sensitivity of 7.56 µA µM-1 cm-2. The proposed sensor also showed remarkable operational and storage stability, reproducibility, and repeatability. Furthermore, the practicability of the GO-Fe/ZnO/SPCE sensor has been verified with real sample analysis using commercial antipsychotic CPZ tablets and human urine samples, and adequate recovery has been achieved.


Subject(s)
Chlorpromazine/analysis , Graphite/chemistry , Iron/chemistry , Limit of Detection , Nanotechnology , Ultrasonic Waves , Zinc Oxide/chemistry , Antipsychotic Agents/analysis , Antipsychotic Agents/chemistry , Antipsychotic Agents/urine , Chemistry Techniques, Synthetic , Chlorpromazine/chemistry , Chlorpromazine/urine , Electrochemistry , Electrodes , Humans , Hydrogen-Ion Concentration , Metal Nanoparticles/chemistry , Models, Molecular , Molecular Conformation
3.
J Colloid Interface Sci ; 495: 111-121, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28189954

ABSTRACT

A novel series of reduced graphene oxide (RGO)/macrocyclic iron (Fe) complex hybrid materials were synthesized and then used in the production of counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). The electrode properties of various CEs were comprehensively analyzed using scanning electron microscopy, transmission electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, energy dispersive spectroscopy, Raman spectroscopy, X-ray diffraction, and cyclic voltammetry analyses. DSSCs, based on various CEs, were characterized using current density-voltage, incident monochromatic photon-to-current conversion efficiency, and electrochemical impedance spectroscopy measurements. DSSCs fabricated using the RGO/macrocyclic Fe nanocomposite CEs yielded an efficiency of 6.75%. The RGO/Fe CEs exhibited efficient electrocatalytic capability because catalytic Fe particles were uniformly distributed on the surface of RGO. The results indicated that a DSSC with a RGO/Fe CE can exhibit an efficiency comparable to that of a platinum (Pt) CE DSSC and can therefore replace conventional Pt CE DSSCs to lower the cost of solar cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...