Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Vis Comput Graph ; 27(2): 1666-1676, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33275582

ABSTRACT

Efficient layout of large-scale graphs remains a challenging problem: the force-directed and dimensionality reduction-based methods suffer from high overhead for graph distance and gradient computation. In this paper, we present a new graph layout algorithm, called DRGraph, that enhances the nonlinear dimensionality reduction process with three schemes: approximating graph distances by means of a sparse distance matrix, estimating the gradient by using the negative sampling technique, and accelerating the optimization process through a multi-level layout scheme. DRGraph achieves a linear complexity for the computation and memory consumption, and scales up to large-scale graphs with millions of nodes. Experimental results and comparisons with state-of-the-art graph layout methods demonstrate that DRGraph can generate visually comparable layouts with a faster running time and a lower memory requirement.

2.
IEEE Trans Vis Comput Graph ; 26(1): 1161-1171, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31443022

ABSTRACT

Analysts commonly investigate the data distributions derived from statistical aggregations of data that are represented by charts, such as histograms and binned scatterplots, to visualize and analyze a large-scale dataset. Aggregate queries are implicitly executed through such a process. Datasets are constantly extremely large; thus, the response time should be accelerated by calculating predefined data cubes. However, the queries are limited to the predefined binning schema of preprocessed data cubes. Such limitation hinders analysts' flexible adjustment of visual specifications to investigate the implicit patterns in the data effectively. Particularly, RSATree enables arbitrary queries and flexible binning strategies by leveraging three schemes, namely, an R-tree-based space partitioning scheme to catch the data distribution, a locality-sensitive hashing technique to achieve locality-preserving random access to data items, and a summed area table scheme to support interactive query of aggregated values with a linear computational complexity. This study presents and implements a web-based visual query system that supports visual specification, query, and exploration of large-scale tabular data with user-adjustable granularities. We demonstrate the efficiency and utility of our approach by performing various experiments on real-world datasets and analyzing time and space complexity.

SELECTION OF CITATIONS
SEARCH DETAIL
...