Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 13153, 2023 08 12.
Article in English | MEDLINE | ID: mdl-37573414

ABSTRACT

This study aimed to investigate the effects of different levels of autophagy induced by transient serum starvation on the metabolism, lipid metabolism, and differentiation of porcine skeletal muscle satellite cells (SMSCs) to preliminary elucidate the role and function of autophagy in the regulatory network of skeletal muscle development. Different levels of autophagy were induced by controlling the serum concentration in the culture system for 24 h. Apoptosis, membrane potential, reactive oxygen species (ROS), ATP, and myogenic and lipogenic differentiation markers were monitored to determine if autophagy affected the metabolism and differentiation of SMSCs. Autophagy was induced in SMSCs via serum starvation (5%, 15%), as evidenced by decreased p62 and mTOR phosphorylation levels and increased LC3B lipidation and AMPK phosphorylation levels. Transmission electron microscopy revealed the presence of autophagosomes, and the rates of morphologically abnormal nuclei and mitochondria gradually increased with the decrease in serum concentration, the number of autophagic lysosomes also increased, indicating that 5% serum starvation induced severe autophagy, while 15% serum starvation induced mild autophagy. Compared with the control group and 15% serum-starved SMSCs, SMSCs undergoing 5% serum starvation had the highest intracellular ATP and ROS levels, the highest percentage of apoptotic cells, and the lowest membrane potential. The 15% serum-starved SMSCs had the highest membrane potential, but the percentage of apoptotic cells did not change significantly compared with the control group. The levels of the myogenic markers MyoD1 and MHC were significantly higher in 15% serum-starved SMSCs than in serum-sufficient SMSCs and the lowest in the 5% serum-starved SMSCs. The lipid contents (measured by Oil Red O staining and quantification of triglycerides) and lipogenic markers Peroxisome Proliferators-activated Receptors γ and Lipoprotein Lipase were also significantly higher in SMSCs undergoing 15% serum starvation than in the control group, and the lowest in the 5% serum-starved SMSCs. Different levels of starvation stress induce different levels of autophagy. Mild autophagy induced by moderate serum starvation promotes the metabolism and differentiation of SMSCs, while severe autophagy renders SMSCs more apoptotic, abnormal metabolism and suppresses SMSC differentiation into adipocytes or myocytes, and reduces lipid metabolisms. Our study suggests that autophagy plays a role in skeletal muscle development and may help design strategies for improving meat production traits in domestic pigs.


Subject(s)
Satellite Cells, Skeletal Muscle , Starvation , Animals , Swine , Reactive Oxygen Species/metabolism , Satellite Cells, Skeletal Muscle/metabolism , Cell Differentiation , Autophagy , Starvation/metabolism , Lipids/pharmacology , Adenosine Triphosphate/metabolism , Muscle, Skeletal/metabolism
2.
Chemosphere ; 307(Pt 4): 136081, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35995189

ABSTRACT

Bottom traps capture and preserve nutrient-rich mobile bottom sediments by forming a weak hydrodynamic environment. In this study, Lake Chaohu, a large shallow lake in China, was considered the research object, and the influence of trap at the bottom of the lake on the physical, chemical, and biological characteristics of sediments and water were analysed by combining on-site monitoring and laboratory analysis. The results showed that the hydrodynamic intensity was attenuated by more than 65% at the bottom of the trap compared with that of the upper surface of the water body under different weather conditions, forming an obviously weak hydrodynamic environment. The weak dynamic environment and large sedimentation rate at the bottom of the trap were beneficial to the sedimentation and storage of fine particles that adsorb nutrients, such as nitrogen and phosphorus, in the water. Owing to the increase in local water depth, a low-temperature and low-dissolved oxygen environment was formed inside the trap. The abundance and diversity of microorganisms in the sediments inside the trap were reduced, and the abundance of nitrifying and denitrifying bacteria in the sediment was reduced by approximately 50%, indicating an environment favourable for nitrogen accumulation in the sediment in the trap. Therefore, the environment inside the bottom trap is favourable for capturing the high nutrient-rich particulate matter in the water, which provides theoretical support for use of the lake bottom traps for controlling the endogenous pollution of shallow lakes.


Subject(s)
Lakes , Water Pollutants, Chemical , China , Environmental Monitoring , Geologic Sediments/chemistry , Lakes/chemistry , Nitrogen/analysis , Nutrients/analysis , Oxygen/analysis , Particulate Matter/analysis , Phosphorus/analysis , Water/analysis , Water Pollutants, Chemical/analysis
3.
Biochem Genet ; 60(6): 2533-2551, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35589876

ABSTRACT

Stanniocalcin-1 (STC-1) is a glycoprotein hormone involved in calcium/phosphorus metabolism and direct inhibition of bone and muscle growth. The aim of this study was to investigate the STC-1 gene with respect to the regulatory mechanisms of porcine growth metabolic pathways involving autophagy. Western blotting was used to detect the expression of autophagy and mitochondrial function-related proteins, and flow cytometry was used to detect mitochondrial function-related. Changes in the autophagosome and mitochondrial were observed by electron microscopy. The expression of the autophagy-related proteins was detected by confocal microscopy. The results showed that Pink1, Parkin and LC3B expression was increased; SQSTM1/P62 expression was reduced. Electron microscopy revealed that the cells in the serum starvation group all produced autophagosomes. The fluorescence intensity of GFP-LC3B and GFP-Parkin increased. The Bax/Bcl-2 ratio, Pink1 and Parkin protein levels were profoundly reduced in the STC-KO. In addition, the increase in Mfn2, OPA1, DRP1 and LC3B proteins was attenuated; the increase in the apoptosis rate and amount of active oxygen was attenuated; the decrease in membrane potential; the decrease in ATP was reversed; the fluorescence intensity of GFP-LC3B and GFP-Parkin was increased. These results indicate that autophagy can be caused by serum starvation. Knocking out the porcine STC-1 gene had an obvious antiapoptotic effect on cells, the inhibition of serum starvation-induced autophagy. This is the first study to show that the porcine STC-1 gene confers self-protection in the absence of nutrients. To provide a theoretical basis for studying the effect of STC-1 on pig growth and development.


Subject(s)
Autophagy , Mitochondria , Animals , Swine , Mitochondria/genetics , Mitochondria/metabolism , Autophagy/physiology , Ubiquitin-Protein Ligases/metabolism , Mitochondrial Proteins/metabolism , Protein Kinases/genetics
4.
Genes Genomics ; 44(12): 1555-1563, 2022 12.
Article in English | MEDLINE | ID: mdl-35438463

ABSTRACT

BACKGROUND: Perilipin 1 (PLIN1) is a lipid droplet scaffolding protein that plays a regulatory role in fat decomposition and mitochondrial function. OBJECTIVE: In this study, the effects of PLIN1 gene knockout (PLIN1-KO) and PLIN1 gene overexpression (PLIN1-EX) on cell metabolism and mitochondrial function in porcine skeletal muscle satellite cells were assessed. METHODS: Porcine skeletal muscle satellite cells were used as the control group (NC). The expression of mitochondrial function-related proteins was detected by western blot. Apoptosis, cell cycle, mitochondrial function-related indices, mitochondrial structure, and morphology were measured by flow cytometry. RESULTS: Our results demonstrated that stable expression of the PLIN1 gene in skeletal muscle satellite cells is critical to maintaining cell metabolism and mitochondrial function. After knockout and overexpression of the PLIN1 gene, the anti-apoptotic ability of cells was enhanced, and the metabolic activity of the cells was accelerated, but at the cost of mitochondrial structural damage, reduction in the number of mitochondria, and decreased mitochondrial function. CONCLUSION: This study explored the effect of the PLIN1 gene on the mitochondria and metabolism of porcine skeletal muscle satellite cells and provided a theoretical basis for the subsequent study of the effects of PLIN1 on muscle tissue development and meat quality.


Subject(s)
Satellite Cells, Skeletal Muscle , Animals , Swine , Perilipin-1/genetics , Mitochondria/genetics , Lipid Metabolism , Proteins
5.
J Environ Manage ; 300: 113798, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34562819

ABSTRACT

The resuspension and sedimentation of particulate matter and the release of nutrients from sediment are important factors affecting the eutrophication of shallow lakes. The capture and removal of particles rich in nitrogen, phosphorus, and other nutrients at the bottom of lakes is of great significance for improving the management and eutrophication status of lakes. This study investigated the feasibility of applying lake bottom trap technology in seven different locations in Lake Chaohu, which is the fifth largest freshwater lake in China. The results showed that the trap in the western part of Lake Chaohu had the highest sedimentation rate and could capture most of the nutrients. The sedimentation rates were higher in spring and summer than in autumn and winter. The bottom trap effectively collected and preserved chlorophyll a, organic matter, total nitrogen, and total phosphorus. The trap per meter length (15-20 m wide) could catch 20.7-27.6 m3 of particles rich in nutrients with a water content of 50-70%, organic matter content of 281.9-375.8 kg, total nitrogen content of 24.5-32.6 kg, and total phosphorus content of 10.5-14 kg. The proposed bottom trap had little impact on the benthic organism system of the lake. The bottom trap technology used in this study could solve the problem of nitrogen, phosphorus, and algae accumulation in lakes and reservoirs, broaden the utility of lake hydrodynamics in environmental pollution control, and provide new ideas and strategies for the control and management of cumulative pollution in shallow lakes and reservoirs.


Subject(s)
Geologic Sediments , Lakes , China , Chlorophyll A , Environmental Monitoring , Eutrophication , Nitrogen/analysis , Nutrients , Phosphorus/analysis , Technology
6.
Article in English | MEDLINE | ID: mdl-33619623

ABSTRACT

Internal loadings of nutrients play important roles in the eutrophication of shallow lakes. The effective removal of sediments rich in nutrients is of great importance for lake management and the abatement of eutrophication. In this study, grooves were installed in the bottom of Lake Chaohu. Approximately 8.5 months later, the chlorophyll a, organic matter, and total nitrogen contents in the sediment inside the grooves were 1.5-3.0 times, 1.2-1.8 times, and 1.3-1.6 times higher, respectively, than those in the surrounding sediments, and the total phosphorus contents in the bottom grooves were slightly lower than those in the surrounding sediments. The thicknesses of the sediments with high chlorophyll a, organic matter, total nitrogen, and total phosphorus contents in the grooves were 5-15 times greater than those of the surrounding sediments with high pollution contents. Internal pollution was captured in the grooves. The active hydrodynamic process was an important factor related to the effectiveness of this method and is conducive to the transport of polluted sediments to the bottom grooves where they are collected. Bottom grooves have broad application potential for the removal of sediments rich in nutrients from shallow-water lakes; these grooves can be widely used in areas that experience large disturbances from wind waves, have water flows gathering in or entering the lake, or have thin sediments with high pollution contents. This study provides scientific guidance for the control and management of internal pollution in shallow lakes.

7.
Water Res ; 185: 116162, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32810742

ABSTRACT

Correcting the systematic bias and quantifying uncertainty associated with the operational water quality forecasts are imperative works for risk-based environmental decision making. This work proposes a post-processing method for addressing both bias correction and total uncertainty quantification for daily forecasts of water quality parameters derived from dynamical lake models. The post-processing is implemented based on a Bayesian Joint Probability (BJP) modeling approach. The BJP model uses a log-sinh transformation to normalize the raw forecasts and corresponding observations, and uses a bivariate Gaussian distribution to characterize the dependence relationship. The posterior distribution of the transformation parameters is inferenced through Metropolis Monte Carlo Markov chain sampling; it generates unbiased probabilistic forecasts that account for uncertainties from all sources. The BJP is used to post-processing raw daily forecasts of dissolved oxygen (DO), ammonium nitrogen (NH), total phosphorus (TP) and total nitrogen (TN) concentrations of Lake Chaohu, the fifth largest lake in China with lead times from 0 to 5 days. Results suggest that an average 93.1% forecast bias has been removed by BJP. The root mean square error in probability skill scores range from 5.8% for NH to 68.2% for TP, and the non-parametric bootstrapping test suggests that 67.7% forecasts are significantly improved averaged across all sampling sites, water quality parameters and lead times. The probabilities of the calibrated forecasts are reasonably consistent with the observed relative frequencies, and have appropriate spread and thus correctly quantify forecast uncertainty. The BJP post-processing method used in this study can be a useful operational tool that help to better realize the potential of water quality forecasts derived from dynamical models.


Subject(s)
Lakes , Water Quality , Bayes Theorem , Calibration , China , Environmental Monitoring , Phosphorus/analysis , Uncertainty
SELECTION OF CITATIONS
SEARCH DETAIL
...