Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Biochem Mol Toxicol ; 38(1): e23524, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37650745

ABSTRACT

Breast cancer, as the most prevalent female malignancy, leads the cancer-related death in women worldwide. Local anesthetic chloroprocaine exhibits antitumor potential, but its specific functions and underlying molecular mechanisms in breast cancer remain unclear. Here, we demonstrated chloroprocaine significantly inhibited proliferation, invasion and induced apoptosis of breast cancer cells in vitro. Tumor growth and pulmonary metastasis were also suppressed in BABL/c nude mice model with chloroprocaine treatment. LINC00494 was identified as one of the most downregulated long noncoding RNAs in chloroprocaine-treated breast cancer cells by high-throughput sequencing. Futhermore, high level of LINC00494 was positively associated with poor outcome of breast cancer patients. LINC00494 acted as a "miRNAs sponge" to compete with MED19 for the biding of miR-3619-5p, led to the upregulation of MED19. LINC00494/miR-3619-5p/MED19 axis participated in chloroprocaine-mediated inhibition of proliferation, invasion and promotion of apoptosis of breast cancer cells. Consequently, our finding suggested local anesthetic chloroprocaine attenuated breast cancer aggressiveness through LINC00494-mediated signaling pathway, which detailly revealed the clinical value of chloroprocaine during breast cancer treatment.


Subject(s)
Breast Neoplasms , MicroRNAs , Procaine/analogs & derivatives , Animals , Mice , Humans , Female , Breast Neoplasms/metabolism , Mice, Nude , Anesthetics, Local/pharmacology , Cell Line, Tumor , Cell Proliferation , MicroRNAs/genetics , MicroRNAs/metabolism , Apoptosis , Gene Expression Regulation, Neoplastic , Cell Movement , Mediator Complex/genetics , Mediator Complex/metabolism
2.
Article in English | MEDLINE | ID: mdl-37906275

ABSTRACT

We applied network pharmacology and molecular docking analyses to study the efficacy of Broussonin E (BRE) in acute respiratory distress syndrome (ARDS) treatment and to determine the core components, potential targets, and mechanism of action of BRE. The SwissTargetprediction and SEA databases were used to predict BRE targets, and the GeneCards and OMIM databases were used to predict ARDS-related genes. The drug targets and disease targets were mapped to obtain an intersecting drug target gene network, which was then uploaded into the String database for protein-protein interaction network analysis. The intersecting gene was also uploaded into the DAVID database for gene ontology enrichment analysis and Kyoto encyclopedia of genes and genomes pathway analysis. Molecular docking analysis was performed to verify the interaction of BRE with the key targets. Finally, to validate the experiment in vivo, we established an oleic acid-induced ARDS rat model and evaluated the protective effect of BRE on ARDS by histological evaluation and enzyme-linked immunosorbent assay. Overall, 79 targets of BRE and 3974 targets of ARDS were predicted, and 79 targets were obtained after intersection. Key genes such as HSP90AA1, JUN, ESR1, MTOR, and PIK3CA play important roles in the nucleus and cytoplasm by regulating the tumor necrosis factor, nuclear factor-κB, and PI3K-Akt signaling pathways. Molecular docking results showed that small molecules of BRE could freely bind to the active site of the target proteins. In vivo experiments showed that BRE could reduce ARDS-related histopathological changes, release of inflammatory factors, and infiltration of macrophages and oxidative stress reaction. BRE exerts its therapeutic effect on ARDS through target and multiple pathways. This study also predicted the potential mechanism of BRE on ARDS, which provides the theoretical basis for in-depth and comprehensive studies of BRE treatment on ARDS.

3.
Nutrients ; 15(14)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37513507

ABSTRACT

The underlying mechanisms of the relationship between the number of teeth and cognition is still unclear. We aimed to construct a mediation model between the number of residual teeth and cognitive function, using nutritional status as a mediating factor. This study was completed using the West China Health and Aging Trend cohort. A total of 6634 multi-ethnic older adults, aged 50 years or older, were included. This study measured cognitive function using the Short-Portable Mental Status Questionnaire, and nutritional status was assessed using the Mini Nutritional Assessment-Short Form. The mediation analysis examined the potential mediating role of nutritional status. The pathway analysis was supplemented and validated using the structural equation modelling framework. Multiple linear regression demonstrated that a higher number of residual teeth was correlated with enhanced cognitive function (ß = -0.15; 95% CI: -0.19 to -0.111). The mediation model, from the number of residual teeth to cognitive impairment, was partially mediated by nutritional status (ß = -0.0608; 95% CI: -0.0762 to -0.0461). The proportion of the mediating effect, expressed as a percentage, was 40.66%. Furthermore, the estimated coefficients for the number of residual teeth and nutritional status varied across ethnic groups. This study indicated that enhancing the nutrition of older adults could reduce the adverse effects of the number of residual teeth on cognitive function among older adults.


Subject(s)
Cognition , Nutritional Status , Tooth , Cross-Sectional Studies , Nutrition Assessment , Cognitive Dysfunction , Mediation Analysis , Nutrition Disorders/complications , Humans , Male , Female , Middle Aged , Aged , Aged, 80 and over
4.
Front Pharmacol ; 13: 1054339, 2022.
Article in English | MEDLINE | ID: mdl-36386130

ABSTRACT

Combined with Network Analysis (NA) and in vivo experimental methods, we explored and verified the mechanism of Cepharanthine (CEP) involved in the treatment of acute respiratory distress syndrome (ARDS). Potential targets of CEP were searched using the SwissTargetPrediction database. The pathogenic genes related to ARDS were obtained using the DisGeNET database. A protein-protein interaction network of common target genes of disease-compound was subsequently built and visualised. Functional enrichment analysis was performed through the Enrichr database. Finally, for in vivo experimental verification, we established an oleic acid-induced ARDS rat model, mainly through histological evaluation and the ELISA method to evaluate both the protective effect of CEP on ARDS and its effect on inflammation. A total of 100 genes were found to be CEP targeted genes, while 153 genes were found to be associated with ARDS. The PPI network was used to illustrate the link and purpose of the genes associated with CEP and ARDS, which contained 238 nodes and 2,333 links. GO and KEGG analyses indicated that inflammatory response and its related signalling pathways were closely associated with CEP-mediated ARDS treatment. Thus, a key CEP-gene-pathway-ARDS network was constructed through network analysis, including 152 nodes (5 targets and 6 pathways) and 744 links. The results of in vivo experiments showed that CEP could alleviate histopathological changes and pulmonary edema related to ARDS, in addition to reducing neutrophil infiltration and secretion of inflammatory cytokines, whilst increasing serum contents of ResolvinD1 and ResolvinE1. Thus, these effects enhance the anti-inflammatory responses. Thus, our results show that CEP can treat oleic acid-induced ARDS in rats via ResolvinE1 and ResolvinD1 signalling pathways that promote inflammation resolution, providing a new avenue to explore for the clinical treatment of ARDS.

5.
Front Immunol ; 13: 928312, 2022.
Article in English | MEDLINE | ID: mdl-36189316

ABSTRACT

Acute respiratory distress syndrome (ARDS) is characterized by disruption of the alveolar-capillary barrier, resulting in severe alveolar edema and inflammation. D-tagatose (TAG) is a low-calorie fructose isomer with diverse biological activities whose role in ARDS has never been explored. We found that TAG protects lung tissues from injury in the oleic acid-induced rat model of ARDS. Seventeen male Sprague-Dawley rats were randomly assigned to 3 groups: Sham (n = 5), ARDS (n = 6), and TAG + ARDS (n = 6). The treatment groups were injected with oleic acid to induce ARDS, and the TAG + ARDS group was given TAG 3 days before the induction. After the treatments, the effect of TAG was evaluated by blood gas analysis and observing the gross and histological structure of the lung. The results showed that TAG significantly improved the oxygenation function, reduced the respiratory acidosis and the inflammatory response. TAG also improved the vascular permeability in ARDS rats and promoted the differentiation of alveolar type II cells, maintaining the stability of the alveolar structure. This protective effect of TAG on the lung may be achieved by activating the PTEN/PI3K/AKT pathway. Thus, TAG protects against oleic acid-induced ARDS in rats, suggesting a new clinical strategy for treating the condition.


Subject(s)
Oleic Acid , Respiratory Distress Syndrome , Animals , Fructose , Hexoses , Male , PTEN Phosphohydrolase , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Rats , Rats, Sprague-Dawley , Respiratory Distress Syndrome/chemically induced , Respiratory Distress Syndrome/prevention & control
6.
Oncol Lett ; 18(6): 6829-6835, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31788126

ABSTRACT

Metastasis, which involves the spread of cancer cells to distant tissues and organs, is a major cause of cancer-associated mortality. Although the use of anesthetics and analgesics may affect cancer cell metastasis, the underlying molecular mechanism remains unclear. Autophagy is a lysosome-based dynamic intracellular catabolic process that serves a crucial role in cancer cell metastasis. In order to investigate the role of autophagy in the migration of cancer cells treated with analgesics, immunofluorescence, western blotting, wound healing assay and cell invasion assay were performed in the present study. The results from immunofluorescence and western blotting demonstrated that the opioid analgesic sufentanil stimulated LC3 induction in NCI-H460 cells. Furthermore, sufentanil increased LC3 and Beclin1 protein levels, but inhibited the fusion of autophagosomes and lysosomes. In addition, sufentanil decreased cathepsin D protein level and increased p62 protein level. The addition of chloroquine (CQ) to sufentanil did not induce a further increase in LC3-II protein levels in NCI-H460 cells, suggesting the impairment of autophagic degradation. Furthermore, treatment with trehalose stimulated the migration of sufentanil-treated cells, whereas additional treatment with CQ did not further decrease the migration of sufentanil-treated cells. In addition, sufentanil co-treatment with trehalose significantly increased the invasion of lung cancer cells, whereas, additional treatment with CQ did not further reduce the invasion of sufentanil-treated cells. These results indicated that autophagy may be involved in the inhibition of NCI-H460 cell migration by sufentanil, and that sufentanil may be considered as a favorable analgesic for patients with lung cancer.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 74(1): 74-7, 2009 Sep 15.
Article in English | MEDLINE | ID: mdl-19523871

ABSTRACT

The local structures and spin Hamiltonian parameters (g factors and the hyperfine structure constants) of the Rh(4+)(4d(5)) and Ir(4+)(5d(5)) centers in rhombohedral BaTiO(3) are theoretically investigated from the formulas of these parameters for a nd(5) (n=4 and 5) ion with low spin (S=1/2) in a trigonally distorted octahedron. From the calculations, the impurity ions are found not to occupy exactly the host Ti(4+) site in BaTiO(3) but to suffer a slight inward shift ( approximately 0.13A) towards the center of the oxygen octahedron along the C(3) axis, yielding much smaller trigonal distortion as compared with that of the host Ti(4+) site. The theoretical spin Hamiltonian parameters based on the above impurity axial shifts are in good agreement with the observed values.


Subject(s)
Barium Compounds/chemistry , Barium/chemistry , Titanium/chemistry , Electron Spin Resonance Spectroscopy , Ions/chemistry , Models, Theoretical , Molecular Structure
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 73(5): 879-83, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19457715

ABSTRACT

The local angular distortions and the spin-Hamiltonian parameters (the g factors and the hyperfine parameters) for Ni(+) in ABS(2) (A=Cu, Ag; B=Al, Ga) ternary sulfides are theoretically investigated from the perturbation formulas of these parameters for 3d(9) ions in a tetragonally distorted tetrahedron. In view of the strong covalency of such systems, the ligand orbital and spin-orbit coupling contributions are taken into account using the cluster approach. The local impurity-ligand bond angles in the Ni(+) centers are found to be about 1.4-4.5 degrees smaller than those of the host monovalent A sites in the pure crystals, due to size mismatching substitution. As a result, the ligand tetrahedra exhibit slight elongation in CuBS(2):Ni(+) and slight compression in AgGaS(2):Ni(+). The calculated spin-Hamiltonian parameters, optical transitions and the relative intensity ratios show reasonable agreement with the experimental data.


Subject(s)
Cations/chemistry , Electron Spin Resonance Spectroscopy , Nickel/chemistry , Sulfides/chemistry , Crystallization , Models, Chemical , Molecular Structure
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 71(4): 1307-10, 2008 Dec 15.
Article in English | MEDLINE | ID: mdl-18511335

ABSTRACT

The spin Hamiltonian parameters (the g factors and the hyperfine structure constants) and local structure for ZnO:Cu2+ are theoretically studied from the perturbation formulas of these parameters for a 3d9 ion under trigonally distorted tetrahedra. The ligand orbital and spin-orbit coupling contributions are taken into account from the cluster approach due to the significant covalency of the [CuO4](6-) cluster. According to the investigations, the impurity Cu2+ is suggested not to locate on the ideal Zn2+ site in ZnO but to undergo a slight outward displacement (approximately 0.01 angstroms) away from the ligand triangle along C3 axis. The calculated spin Hamiltonian parameters are in good agreement with the observed values. The validity of the above impurity displacement is also discussed.


Subject(s)
Copper/chemistry , Electron Spin Resonance Spectroscopy/methods , Spectrophotometry/methods , Zinc Oxide/chemistry , Zinc/chemistry , Anisotropy , Crystallization , Electrons , Ions , Ligands , Models, Chemical , Molecular Conformation , Molecular Structure , Tartrates/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...