Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
1.
ACS Nano ; 18(5): 4189-4204, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38193384

ABSTRACT

cGAS-STING signaling plays a critical role in radiotherapy (RT)-mediated immunomodulation. However, RT alone is insufficient to sustain STING activation in tumors under a safe X-ray dose. Here, we propose a radiosensitization cooperated with cGAS stimulation strategy by engineering a core-shell structured nanosized radiosensitizer-based cGAS-STING agonist, which is constituted with the hafnium oxide (HfO2) core and the manganese oxide (MnO2) shell. HfO2-mediated radiosensitization enhances immunogenic cell death to afford tumor associated antigens and adequate cytosolic dsDNA, while the GSH-degradable MnO2 sustainably releases Mn2+ in tumors to improve the recognition sensitization of cGAS. The synchronization of sustained Mn2+ supply with cumulative cytosolic dsDNA damage synergistically augments the cGAS-STING activation in irradiated tumors, thereby enhancing RT-triggered local and system effects when combined with an immune checkpoint inhibitor. Therefore, the synchronous radiosensitization with sustained STING activation is demonstrated as a potent immunostimulation strategy to optimize cancer radio-immuotherapy.


Subject(s)
Hafnium , Manganese Compounds , Neoplasms , Humans , Manganese Compounds/pharmacology , Oxides/pharmacology , Oxides/therapeutic use , Immunotherapy , Neoplasms/drug therapy , Neoplasms/radiotherapy , Nucleotidyltransferases
2.
J Colloid Interface Sci ; 660: 869-884, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38277843

ABSTRACT

Infiltration and activation of intratumoral T lymphocytes are critical for immune checkpoint blockade (ICB) therapy. Unfortunately, the low tumor immunogenicity and immunosuppressive tumor microenvironment (TME) induced by tumor metabolic reprogramming cooperatively hinder the ICB efficacy. Herein, we engineered a lactate-depleting MOF-based catalytic nanoplatform (LOX@ZIF-8@MPN), encapsulating lactate oxidase (LOX) within zeolitic imidazolate framework-8 (ZIF-8) coupled with a coating of metal polyphenol network (MPN) to reinforce T cell response based on a "two birds with one stone" strategy. LOX could catalyze the degradation of the immunosuppressive lactate to promote vascular normalization, facilitating T cell infiltration. On the other hand, hydrogen peroxide (H2O2) produced during lactate depletion can be transformed into anti-tumor hydroxyl radical (•OH) by the autocatalytic MPN-based Fenton nanosystem to trigger immunogenic cell death (ICD), which largely improved the tumor immunogenicity. The combination of ICD and vascular normalization presents a better synergistic immunopotentiation with anti-PD1, inducing robust anti-tumor immunity in primary tumors and recurrent malignancies. Collectively, our results demonstrate that the concurrent depletion of lactate to reverse the immunosuppressive TME and utilization of the by-product from lactate degradation via cascade catalysis promotes T cell response and thus improves the effectiveness of ICB therapy.


Subject(s)
Metal-Organic Frameworks , Neoplasms , Humans , Lactic Acid/pharmacology , Metal-Organic Frameworks/pharmacology , Hydrogen Peroxide/pharmacology , T-Lymphocytes , Immunotherapy , Cell Line, Tumor , Tumor Microenvironment
3.
Macromol Biosci ; 24(2): e2300325, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37805941

ABSTRACT

The clinical treatment of bone defects presents ongoing challenges. One promising approach is bone tissue engineering (BTE), wherein hydrogels have garnered significant attention. However, the application of hydrogels in BTE is severely limited due to their poor mechanical properties, as well as their inferior proangiogenic and osteogenic activities. To address these limitations, our develop a dual cross-linked alendronate (ALN)-Ca2+ /Mg2+ -doped sulfated hyaluronic acid (SHA@CM) hydrogel, using a one-step mixing injection molding method known as "three-in-one" approach. This approach enabled the simultaneous formation of Schiff-Base crosslinking and electric attraction-based crosslinking within the hydrogel. The Schiff-Base crosslinking contributed to the majority of the hydrogel's mechanical strength, while the electric attraction-based crosslinking served as a release reservoir for Ca2+ /Mg2+ and ALN, promoting enhanced osteogenic activities and providing additional mechanical reinforcement to the hydrogel. These experimental data demonstrates several favorable properties of the SHA@CM hydrogel, including satisfactory injectability, rapid gelation, self-healing capacity, and excellent cytocompatibility. Moreover, the presence of sulfated groups and Mg2+ within the SHA@CM hydrogel exhibited pro-angiogenic effects, while the controlled release of nanoparticles formed by Ca2+ /Mg2+ and ALN further enhanced the osteogenesis of the hydrogel. Overall, these results indicate that the SHA@CM hydrogel holds significant potential for the clinical translation of BTE.


Subject(s)
Hydrogels , Osteogenesis , Hydrogels/pharmacology , Tissue Engineering , Alendronate , Hyaluronic Acid
4.
Front Bioeng Biotechnol ; 11: 1308184, 2023.
Article in English | MEDLINE | ID: mdl-38026853

ABSTRACT

The regeneration of skin tissue is often impeded by bacterial infection seriously. At the same time, reactive oxygen species (ROS) are often overexpressed in infected skin wounds, causing persistent inflammation that further hinders the skin repair process. All of these make the treatment of infected wounds is still a great challenge in clinic. In this study, we fabricate Cu(II)@MXene photothermal complex based on electrostatic self-assembly between Cu2+ and MXene, which are then introduced into a hyaluronic acid (HA) hydrogel to form an antibacterial dressing. The rapid adhesion, self-healing, and injectability of the dressing allows the hydrogel to be easily applied to different wound shapes and to provide long-term wound protection. More importantly, this easily prepared Cu(II)@MXene complex can act as a photothermal antibacterial barrier, ROS scavenger and angiogenesis promoter simultaneously to accelerate the healing rate of infected wounds. Our in vivo experiments strongly proved that the inflammatory condition, collagen deposition, vessel formation, and the final wound closure area were all improved by the application of Cu(II)@MXene photothermal hydrogel dressing.

5.
Cancer Lett ; 575: 216398, 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37730106

ABSTRACT

Gallbladder carcinoma (GBC) is the most common malignancy of the biliary tract, and its molecular pathogenesis remains unclear. Here we explore the functional roles of epithelial membrane protein 3 (EMP3) in GBC progression, which is aberrantly expressed in various types of cancers. The results showed that the expression level of EMP3 was reduced in human GBC tissues compared with non-malignant tissues. Further, the low expression of EMP3 was associated with the poor prognosis of GBC patients by Kaplan-Meier analysis. The ectopic expression of EMP3 inhibited GBC cell proliferation, migration and invasion in vitro and in vivo. Conversely, the depletion of EMP3 promoted GBC cell growth and metastasis. In addition, we found that EMP3 was a target gene of miR-663a, and the downregulation of EMP3 in GBC was attributed to the overexpression of miR-663a. MiR-663a was also shown to be a tumor-promoting factor mediating GBC development. In this study, we demonstrate that downregulation of EMP3 activates MAPK/ERK signaling, which regulates GBC progression. These data reveal the mechanism by which EMP3 inhibits the progression of GBC, suggesting that the miR-663a/EMP3/MAPK/ERK axis may be a new therapeutic target for GBC treatment.

6.
ACS Nano ; 17(14): 13195-13210, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37256771

ABSTRACT

Radiotherapy (RT) is one of the important clinical treatments for local control of triple-negative breast cancer (TNBC), but radioresistance still exists. Ferroptosis has been recognized as a natural barrier for cancer progression and represents a significant role of RT-mediated anticancer effects, while the simultaneous activation of ferroptosis defensive system during RT limits the synergistic effect between RT and ferroptosis. Herein, we engineered a tumor microenvironment (TME) degradable nanohybrid with a dual radiosensitization manner to combine ferroptosis induction and high-Z effect based on metal-organic frameworks for ferroptosis-augmented RT of TNBC. The encapsulated l-buthionine-sulfoximine (BSO) could inhibit glutathione (GSH) biosynthesis for glutathione peroxidase 4 (GPX4) inactivation to break down the ferroptosis defensive system, and the delivered ferrous ions could act as a powerful ferroptosis executor via triggering the Fenton reaction; the combination of them induces potent ferroptosis, which could synergize with the surface decorated Gold (Au) NPs-mediated radiosensitization to improve RT efficacy. In vivo antitumor results revealed that the nanohybrid could significantly improve the therapeutic efficacy and antimetastasis efficiency based on the combinational mechanism between ferroptosis and RT. This work thus demonstrated that combining RT with efficient ferroptosis induction through nanotechnology was a feasible and promising strategy for TNBC treatment.


Subject(s)
Ferroptosis , Triple Negative Breast Neoplasms , Humans , Anesthetics, Local , Buthionine Sulfoximine , Fibrinolytic Agents , Glutathione , Cell Line, Tumor , Tumor Microenvironment
7.
Discov Oncol ; 14(1): 70, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37198417

ABSTRACT

PURPOSE: Chordoma is a rare and aggressive bone cancer driven by the developmental transcription factor brachyury. Efforts to target brachyury are hampered by the absence of ligand-accessible small-molecule binding pockets. Genome editing with CRISPR systems provides an unprecedented opportunity to modulate undruggable transcription factor targets. However, delivery of CRISPR remains a bottleneck for in vivo therapy development. The aim was to investigate the in vivo therapeutic efficiency of Cas9/guide RNA (gRNA) ribonucleoprotein (RNP) delivery through a novel virus-like particle (VLP) by fusing an aptamer-binding protein to the lentiviral nucleocapsid protein. METHODS: The p24 based ELISA and transmission electron microscopy were used to determine the characterization of engineered VLP-packaged Cas9/gRNA RNP. The deletion efficiency of brachyury gene in chordoma cells and tissues was measured by genome cleavage detection assay. RT-PCR, Western blot, immunofluorescence staining, and IHC were employed to test the function of brachyury deletion. Cell growth and tumor volume were measured to evaluate the therapeutic efficiency of brachyury deletion by VLP-packaged Cas9/gRNA RNP. RESULTS: Our "all-in-one" VLP-based Cas9/gRNA RNP system allows for transient expression of Cas9 in chordoma cells, but maintains efficient editing capacity leading to approximately 85% knockdown of brachyury with subsequent inhibition of chordoma cell proliferation and tumor progression. In addition, this VLP-packaged brachyury-targeting Cas9 RNP avoids systemic toxicities in vivo. CONCLUSION: Our preclinical studies demonstrate the potential of VLP-based Cas9/gRNA RNP gene therapy for the treatment of brachyury-dependent chordoma.

8.
Cancer Lett ; 563: 216184, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37088328

ABSTRACT

Despite of the high lethality of gallbladder cancer (GBC), little is known regarding molecular regulation of the tumor immunosuppressive microenvironment. Here, we determined tumor expression levels of YKL-40 and the molecular mechanisms by which YKL-40 regulates escape of anti-tumor immune surveillance. We found that elevated expression levels of YKL-40 in plasma and tissue were correlated with tumor size, stage IV and lymph node metastasis. Single cell transcriptome analysis revealed that YKL-40 was predominantly derived from M2-like subtype of infiltrating macrophages. Blockade of M2-like macrophage differentiation of THP-1 cells with YKL-40 shRNA resulted in reprogramming to M1-like macrophages and restricting tumor development. YKL-40 induced tumor cell expression and secretion of growth differentiation factor 15 (GDF15), thus coordinating to promote PD-L1 expression mediated by PI3K, AKT and/or Erk activation. Interestingly, extracellular GDF15 inhibited intracellular expression of GDF15 that suppressed PD-L1 expression. Thus, YKL-40 disrupted the balance of pro- and anti-PD-L1 regulation to enhance expression of PD-L1 and inhibition of T cell cytotoxicity, leading to tumor immune evasion. The data suggest that YKL-40 and GDF15 could serve as diagnostic biomarkers and immunotherapeutic targets for GBC.


Subject(s)
Gallbladder Neoplasms , Humans , B7-H1 Antigen , Cell Line, Tumor , Chitinase-3-Like Protein 1/metabolism , Gallbladder Neoplasms/metabolism , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/metabolism , Macrophages/metabolism , Tumor Escape , Tumor Microenvironment
9.
Mater Today Bio ; 19: 100558, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36747579

ABSTRACT

Although hydrogels have been widely studied because of their satisfactory biocompatibility and plasticity, their application is limited in bone tissue engineering (BTE) owing to their inadequate mechanical properties and absence of osteogenic activity. To address this issue, we developed an updated alendronate (ALN)-Ca2+/Mg2+-doped supramolecular (CMS) hydrogel based on our previously developed mechanically resilient "host-guest macromer" (HGM) hydrogel to improve the hydrogel's mechanical properties and osteogenic activity. The CMS hydrogel was prepared by introducing a new physical crosslinking comprising the strong chelation of the comonomer acrylate alendronate (Ac-ALN) and Ca2+/Mg2+ in the HGM hydrogel. Compared with the previously developed HGM hydrogel, the upgraded CMS hydrogel presented better mechanical properties because of the additional physical crosslinking, while possessing injectable and self-healing properties like the HGM hydrogel. Moreover, the addition of Ac-ALN and Ca2+/Mg2+ also effectively promoted the in vitro proliferation, migration, and osteogenic differentiation of bone marrow-derived stem cells. The healing effect of a rat cranial defect further proved that the in vivo bone regeneration ability of CMS hydrogel was better than that of HGM hydrogel. The updated CMS hydrogel shows significant potential for BTE application.

12.
Cancer Lett ; 547: 215867, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-35985510

ABSTRACT

Immune checkpoint inhibitors provide promising benefits for patients with cancer. However, efficacy has been encumbered by high resistance rates. It is critical to understand the basic mechanisms of tumor-mediated resistance to this treatment modality. Previous studies have found that the transcription factor brachyury is highly expressed in lung cancer. Here, we show that brachyury activation induces the upregulation of PD-L1 leading to inactivation of T cell proliferation in vitro and inhibited infiltration of CD8+ and CD3+ T cells into tumor in an immunocompetent mouse model. We further demonstrate that FGFR1/MAPK activation regulates brachyury and PD-L1 expressions and promotes immunosuppression. Blocking FGFR1/MAPK suppresses brachyury and PD-L1 expressions, revives immune activity, and reverses the resistance to anti-PD-1 treatment to produce a durable therapeutic response. We also find that lung cancer patients with high activation of the FGFR1-MAPK-brachyury-PD-L1 signature and low expression of CD8A, CD3D, or PDCD1 have worse survival outcomes. These findings elucidate a novel mechanism of immune escape from immune checkpoint therapy and provide an opportunity to enhance its therapeutic efficacy in the treatment of a subset of FGFR1/MAPK/brachyury/PD-L1-driven lung cancer.


Subject(s)
B7-H1 Antigen , Lung Neoplasms , Animals , B7-H1 Antigen/metabolism , Cell Line, Tumor , Fetal Proteins/genetics , Fetal Proteins/therapeutic use , Immune Evasion , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Mitogen-Activated Protein Kinases/metabolism , Receptor, Fibroblast Growth Factor, Type 1/metabolism , T-Box Domain Proteins
15.
Front Bioeng Biotechnol ; 10: 837750, 2022.
Article in English | MEDLINE | ID: mdl-35223798

ABSTRACT

Conductive hydrogel is a vital candidate for the fabrication of flexible and wearable electric sensors due to its good designability and biocompatibility. These well-designed conductive hydrogel-based flexible strain sensors show great potential in human motion monitoring, artificial skin, brain computer interface (BCI), and so on. However, easy drying and freezing of conductive hydrogels with high water content greatly limited their further application. Herein, we proposed a natural polymer-based conductive hydrogel with excellent mechanical property, low water loss, and freeze-tolerance. The main hydrogel network was formed by the Schiff base reaction between the hydrazide-grafted hyaluronic acid and the oxidized chitosan, and the added KCl worked as the conductive filler. The reversible crosslinking in the prepared hydrogel resulted in its resilience and self-healing feature. At the same time, the synthetic effect of KCl and glycerol endowed our hydrogel with outstanding anti-freezing property, while glycerol also endowed this hydrogel with anti-drying property. When this hydrogel was assembled as a flexible strain sensor, it showed good sensitivity (GF = 2.64), durability, and stability even under cold condition (-37°C).

16.
Nanoscale ; 14(8): 3097-3111, 2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35141740

ABSTRACT

The lymphatic system provides a main route for the dissemination of most malignancies, which was related to high mortality in cancer patients. Traditional intravenous chemotherapy is of limited effectiveness on lymphatic metastasis due to the difficulty in accessing the lymphatic system. Herein, a novel lymphatic-targeting nanoplatform is prepared by loading doxorubicin (DOX) into sub-50 nm polypyrrole nanovesicles (PPy NVs). The PPy NVs possessed hollow spherical morphologies and a negative surface charge, leading to high drug loading capacity. These vesicles can also convert near-infrared (NIR) light into heat and thus can be used for tumor thermal ablation. DOX loaded PPy NVs (PPy@DOX NVs) along with NIR illumination are highly effective against 4T1 breast cancer cells in vitro. More importantly, following subcutaneous (SC) injection, a direct lymphatic migration of PPy@DOX NVs is confirmed through fluorescence observation of the isolated draining nodes. The acidic conditions in metastatic nodes might subsequently trigger the release of the encapsulated DOX NVs based on their pH-sensitive release profile. In a mouse model bearing 4T1 breast cancer, lymphatic metastases, as well as lung metastases, are significantly inhibited by nanocarrier-mediated trans-lymphatic drug delivery in combination with photothermal ablation. In conclusion, this platform holds great potential in impeding tumor growth and metastasis.


Subject(s)
Lung Neoplasms , Nanoparticles , Animals , Cell Line, Tumor , Doxorubicin/pharmacology , Drug Liberation , Humans , Lymphatic System , Mice , Nanoparticles/therapeutic use , Polymers , Pyrroles
17.
Front Bioeng Biotechnol ; 10: 846401, 2022.
Article in English | MEDLINE | ID: mdl-35198546

ABSTRACT

Hydrogel-based flexible electronic devices are essential in future healthcare and biomedical applications, such as human motion monitoring, advanced diagnostics, physiotherapy, etc. As a satisfactory flexible electronic material, the hydrogel should be conductive, ductile, self-healing, and adhesive. Herein, we demonstrated a unique design of mechanically resilient and conductive hydrogel with double network structure. The Ca2+ crosslinked alginate as the first dense network and the ionic pair crosslinked polyzwitterion as the second loose network. With the synthetic effect of these two networks, this hydrogel showed excellent mechanical properties, such as superior stretchability (1,375%) and high toughness (0.57 MJ/m3). At the same time, the abundant ionic groups of the polyzwitterion network endowed our hydrogel with excellent conductivity (0.25 S/m). Moreover, due to the dynamic property of these two networks, our hydrogel also performed good self-healing performance. Besides, our experimental results indicated that this hydrogel also had high optical transmittance (92.2%) and adhesive characteristics. Based on these outstanding properties, we further explored the utilization of this hydrogel as a flexible wearable strain sensor. The data strongly proved its enduring accuracy and sensitivity to detect human motions, including large joint flexion (such as finger, elbow, and knee), foot planter pressure measurement, and local muscle movement (such as eyebrow and mouth). Therefore, we believed that this hydrogel had great potential applications in wearable health monitoring, intelligent robot, human-machine interface, and other related fields.

18.
Shanghai Kou Qiang Yi Xue ; 31(5): 523-529, 2022 Oct.
Article in Chinese | MEDLINE | ID: mdl-36758602

ABSTRACT

PURPOSE: To characterize the alterations of intestinal bacteria and immunological function in patients with oral squamous cell carcinoma(OSCC) before and after treatment. METHODS: From September 2020 to September 2021, 28 patients suffering OSCC and 10 healthy volunteers undergoing treatment at our hospital were enrolled in the study. Conventional treatment regimens were administered to OSCC patients and the changes in immune function, intestinal bacteria composition and short-chain fatty acids were measured 1 week before and 6 months after therapy. GraphPad Prism 9.0 software package was used for data analysis. RESULTS: Immunological function measurements indicated significantly lower levels of lymphocyte subsets (including CD3+, CD4+, NK, CD4+/CD8+) and immunoglobulins (including IgG, IgA, IgM) in the peripheral blood of OSCC patients before treatment compared to healthy volunteers (P<0.05), as well as remarkably lower levels of serum cytokines (including TNF-α、IL-4、IL-6) (P<0.05). Following 6 months of conventional treatment, there was an improvement in immune function in OSCC patients compared to all patients before treatment(P<0.05). Compared to healthy volunteers, the diversity of intestinal bacteria was decreased in OSCC patients before treatment, whereas the diversity of intestinal bacteria recovered in OSCC patients after conventional treatment. At the phylum, the distribution of Epsilonbacteraeota, Proteobacteria and Patescibacteria were significantly elevated and the concentration of Verrucomicrobia was decreased in OSCC patients before treatment compared to healthy volunteers(P<0.05). Intriguingly, convention therapy reversed the disturbance of intestinal bacteria, including downgrading levels of Epsilonbacteraeota, Proteobacteria and Patescibacteria and increasing levels of Verrucomicrobia(P<0.05). Short-chain fatty acids (including acetic acid, propionic acid and butyric acid) were present at a lower level in the intestine of OSCC patients before treatment and were elevated after conventional treatment. CONCLUSIONS: Conventional treatment remarkably enhances immune function, revitalizes the distribution of intestinal microflora, elevates the content of short-chain fatty acids in the intestine of OSCC patients, thereby improving the patients' health.


Subject(s)
Carcinoma, Squamous Cell , Gastrointestinal Microbiome , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Carcinoma, Squamous Cell/pathology , Mouth Neoplasms/pathology , Immunity
SELECTION OF CITATIONS
SEARCH DETAIL
...