Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
J Agric Food Chem ; 72(14): 8225-8236, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38557068

ABSTRACT

As a continuous flow investigation of novel pesticides from natural quinolizidine alkaloids, the chemical compositions of the seeds of Sophora alopecuroides were thoroughly researched. Fifteen new aloperine-type alkaloids (1-15) as well as six known aloperine-type alkaloids (16-21) were obtained from the extract of S. alopecuroides. The structures of 1-21 were confirmed via HRESIMS, NMR, UV, IR, ECD calculations, and X-ray diffraction. The antiviral activities of 1-21 against tobacco mosaic virus (TMV) were detected following the improved method of half-leaf. Compared with ningnanmycin (protective: 69.7% and curative: 64.3%), 15 exhibited excellent protective (71.7%) and curative (64.6%) activities against TMV. Further biological studies illustrated that 15 significantly inhibited the transcription of the TMV-CP gene and increased the activities of polyphenol oxidase (PPO), peroxidase (POD), superoxide dismutase (SOD), and phenylalanine ammonia-lyase (PAL). The antifungal activities of 1-21 against Phytophythora capsica, Botrytis cinerea, Alternaria alternata, and Gibberella zeae were screened according to a mycelial inhibition test. Compound 13 displayed excellent antifungal activity against B. cinerea (EC50: 7.38 µg/mL). Moreover, in vitro antifungal mechanism studies displayed that 13 causes accumulation of reactive oxygen species and finally leads to mycelia cell membrane damage and cell death in vitro.


Subject(s)
Alkaloids , Quinolizidines , Sophora , Tobacco Mosaic Virus , Antifungal Agents , Sophora/chemistry , Alkaloids/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Seeds/chemistry
2.
J Agric Food Chem ; 72(12): 6711-6722, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38491973

ABSTRACT

Through bioassay-guided isolation, eight undescribed coumarins (1-8), along with six reported coumarins (9-14), were obtained from Coriaria nepalensis. The new structures were determined by using IR, UV, NMR, HRESIMS, and ECD calculations. The results of the biological activity assays showed that compound 9 exhibited broad spectrum antifungal activities against all tested fungi in vitro and a significant inhibitory effect on Phytophthora nicotianae with an EC50 value of 3.00 µg/mL. Notably, compound 9 demonstrated greater curative and protective effects against tobacco balack shank than those of osthol in vivo. Thus, 9 was structurally modified to obtain new promising antifungal agents, and the novel derivatives (17b, 17j, and 17k) exhibited better effects on Sclerotinia sclerotiorum than did lead compound 9. Preliminary mechanistic exploration illustrated that 9 could enhance cell membrane permeability, destroy the morphology and ultrastructure of cells, and reduce the exopolysaccharide content of P. nicotianae mycelia. Furthermore, the cytotoxicity results revealed that compound 9 exhibited relatively low cytotoxicity against HEK293 cell lines with an inhibition rate of 33.54% at 30 µg/mL. This research is promising for the discovery of new fungicides from natural coumarins with satisfactory ecological compatibility.


Subject(s)
Fungicides, Industrial , Magnoliopsida , Humans , HEK293 Cells , Fungicides, Industrial/chemistry , Antifungal Agents/pharmacology , Nicotiana , Coumarins/chemistry , Structure-Activity Relationship
3.
Chin J Nat Med ; 22(3): 265-272, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38553193

ABSTRACT

Four new sesquiterpene lactones (SLs) (1-4), along with a biosynthetically related SL (5), have been isolated from the leaves of Magnolia grandiflora. Magrandate A (1) is notable as the first C18 homogemarane type SL, featuring a unique 1,7-dioxaspiro[4.4]nonan-6-one core. Compounds 2 and 3, representing the first instances of chlorine-substituted gemarane-type SL analogs in natural products, were also identified. The structures of these isolates were elucidated through a combination of spectroscopic data analysis, electronic circular dichroism calculations, and X-ray single-crystal diffraction analysis. All isolates demonstrated anti-inflammatory activity in lipopolysaccharide-stimulated RAW264.7 cells. Notably, 3-5 showed a significant inhibitory effect on nitric oxide production, with IC50 values ranging from 0.79 to 4.73 µmol·L-1. Additionally, 4 and 5 exhibited moderate cytotoxic activities against three cancer cell lines, with IC50 values between 3.09 and 11.23 µmol·L-1.


Subject(s)
Magnolia , Sesquiterpenes , Molecular Structure , Magnolia/chemistry , Anti-Inflammatory Agents/pharmacology , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Lactones/pharmacology , Lactones/chemistry
4.
J Agric Food Chem ; 72(9): 5047-5061, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38394631

ABSTRACT

As part of our ongoing investigation of natural bioactive substances from the genus Thermopsis of the tribe Fabaceae for agricultural protection, the chemical constituents of the herb Thermopsis lupinoides were systematically investigated, which led to the isolation of 39 quinolizidine alkaloids (QAs) (1-39), including 14 new QAs (1-14) and 14 isoflavones (40-53). Their structures were elucidated through comprehensive spectroscopic data analysis (IR, UV, NMR, HRESIMS), ECD calculations, and X-ray crystallography. The antitomato spotted wilt virus (TSWV) and antifungal (against Botrytis cinerea, Gibberella zeae, Phytophythora capsica, and Alternaria alternata) and insecticidal (against Aphis fabae and Tetranychus urticae) activities of the isolated compounds were screened using the lesion counting method, mycelial inhibition assay, and spray method, respectively. The bioassay results showed that 34 exhibited excellent protective activity against TSWV, with an EC50 value of 36.04 µg/mL, which was better than that of the positive control, ningnanmycin (86.03 µg/mL). The preliminary mechanistic exploration illustrated that 34 induced systemic acquired resistance in the host plant by acting on the salicylic acid signaling pathway. Moreover, 1 showed significant antifungal activity against B. cinerea (EC50 value of 20.83 µg/mL), while 2 exhibited good insecticidal activity against A. fabae (LC50 value of 24.97 µg/mL). This research is promising for the invention of novel pesticides from QAs with high efficiency and satisfactory ecological compatibility.


Subject(s)
Fabaceae , Fungicides, Industrial , Insecticides , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Quinolizidine Alkaloids , Insecticides/pharmacology , Insecticides/chemistry , Antiviral Agents/pharmacology , Structure-Activity Relationship
5.
Bioorg Chem ; 144: 107147, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38280357

ABSTRACT

The strategy of bioactivity-guided isolation is widely used to obtain active compounds as quickly as possible. Thus, the inhibitory effects on human erythroleukemia cells (HEL) were applied to guide the isolation of the anti-leukemic compounds from Aglaia abbreviata. As a result, 19 compounds (16 steroids, two phenol derivatives, and a rare C12 chain nor-sesquiterpenoid), including 13 new compounds, were isolated and identified based on spectroscopic data analysis, single-crystal X-ray diffraction data, and electronic circular dichroism (ECD) calculations. Among them, 9 steroids exhibited good selective anti-leukemic activity against HEL and K562 (human chronic myeloid leukemia cells) cells with IC50 values between 2.29 ± 0.18 µM and 19.58 ± 0.13 µM. Notably, all the active compounds had relatively lower toxicity on the normal human liver cell line (HL-7702). Furthermore, five compounds (1, 4, 8, 10, and 19) displayed good anti-inflammatory effects, with IC50 values between 7.15 ± 0.16 and 27.1 ± 0.37 µM. An α,ß-unsaturated ketone or a 5,6Δ double bond was crucial for improving anti-leukemic effect from the structure-activity relationship analysis. The compound with the most potential, 14 was selected for the preliminary mechanistic study. Compound 14 can induce apoptosis and cause cell cycle arrest. The expression of the marker proteins, such as PARP and caspase 3, were notably effected by this compound, thus inducing apoptosis. In conclusion, our investigation implied that compound 14 may serve as a potential anti-leukemia agent.


Subject(s)
Aglaia , Humans , Aglaia/chemistry , Apoptosis , Biological Assay , Molecular Structure , Steroids/pharmacology , Structure-Activity Relationship , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology
6.
J Asian Nat Prod Res ; 26(3): 302-312, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37312516

ABSTRACT

Three new quinolizidine alkaloids (1 - 3), including one new naturally isoflavone and cytisine polymer (3), along with 6 known ones were isolated from the ethanol extract of Sophora tonkinensis Gagnep. Their structures were elucidated by comprehensive spectroscopic data analysis (IR, UV, HRESIMS, 1D and 2D NMR), combined with ECD calculations. The antifungal activity against Phytophythora capsica, Botrytis cinerea, Gibberella zeae, and Alternaria alternata of the compounds was evaluated in a mycelial inhibition assay. Biological tests indicated that compound 3 exhibited strong antifungal activity against P. capsica with EC50 values of 17.7 µg/ml.


Subject(s)
Alkaloids , Sophora , Quinolizidine Alkaloids , Sophora/chemistry , Antifungal Agents/pharmacology , Plant Roots/chemistry , Alkaloids/chemistry , Molecular Structure
7.
Nat Prod Res ; : 1-6, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38099336

ABSTRACT

Four new steroids cynansteroid G-I (1-3) and cynansteroid K (4), a new natural product 5,6-deacidizingcaudatin (5), and a known compound glycocaudatin (6), were isolated from the roots of Cynanchum auriculatum. The structures of new compounds were identified by comprehensive spectroscopic analyses, including NMR, HRESI-MS, ECD, UV, and IR spectral data. The cytotoxic activities of all the isolates against two human tumour cell lines (COLO-205 and BGC-823) were screened, unfortunately, which were weaker than positive control.

8.
J Agric Food Chem ; 71(44): 16581-16592, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37897427

ABSTRACT

Physalis angulata Linn. is an exotic Amazonian fruit that is commonly recognized as wild tomato, winter cherry, and gooseberry. While its fruit is known to contain many nutrients, such as minerals, fibers, and vitamins, few papers have investigated withanolide derivatives from its fruits. UPLC-Q-Orbitrap-MS/MS, which produces fragmentation spectra, was applied for the first time to guide the isolation of bioactive withanolide derivatives from P. angulata fruits. As a result, twenty-six withanolide derivatives, including two novel 1,10-secowithanolides (1 and 2) and a new derivative (3), were obtained. Compounds 1 and 2 are rare rearranged 1,10-secowithanolides with a tetracyclic 7/6/6/5 ring system. All structures were assigned through various spectroscopic data and quantum chemical calculations. Nine withanolide derivatives exhibited significant inhibitory effects on three tumor cell lines with IC50 values of 0.51-13.79 µM. Moreover, three new compounds (1-3) exhibited potential nitric oxide inhibitory effects in lipopolysaccharide-stimulated RAW264.7 cells (IC50: 7.51-61.8 µM). This investigation indicated that fruits of P. angulata could be applied to treat and prevent cancer and inflammatory-related diseases due to their potent active withanolide derivatives.


Subject(s)
Physalis , Withanolides , Physalis/chemistry , Structure-Activity Relationship , Withanolides/pharmacology , Withanolides/chemistry , Fruit , Tandem Mass Spectrometry , Plant Extracts/pharmacology , Plant Extracts/chemistry
9.
Eur J Med Chem ; 258: 115624, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37423124

ABSTRACT

A new series of 1-phenyl-pyrrolo[1,2-b]isoquinolin-3-one derivatives were designed, synthesized and demonstrated to act as antagonists for the glycine binding site of the NMDA receptor. These new derivatives protected PC12 cells against NMDA-induced injury and cell apoptosis in vitro, among which compound 13b exhibited excellent cytoneuroprotective potency and shown a dose-dependent prevention. The increased intracellular Ca2+ influx caused by NMDA in PC12 cells was reversed when pretreated with compound 13b. Furthermore, the interaction between compound 13b and the glycine binding site of the NMDA receptor was validated via MST assay. It was observed that the stereochemistry of compound 13b did not influence the binding affinity, which was consistent with the neuroprotective result. Molecular docking study confirmed the observed activity of compound 13b by virtue of their Pi-stacking, cation-Pi, H-bonding and Pi-electron interactions with the key amino acids in the glycine binding pocket. These results confirm the potential of 1-phenyl-pyrrolo[1,2-b]isoquinolin-3-one derivatives as neuroprotective agents targeting the glycine binding site of the NMDA receptor.


Subject(s)
Glycine , Receptors, N-Methyl-D-Aspartate , Rats , Animals , Glycine/pharmacology , N-Methylaspartate , Molecular Docking Simulation , Binding Sites
10.
J Agric Food Chem ; 71(10): 4394-4407, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36854107

ABSTRACT

As a continuation of our research on the development of pesticide active quinolizidine alkaloids (QAs) from the family Fabaceae, the chemical constituents of the root of Sophora tonkinensis Gagnep. were systematically investigated. Seventeen new matrine-type alkaloids (1-17), including one new naturally occurring compound (17), along with 20 known ones were isolated from the EtOH extract of S. tonkinensis. Notably, compound 5 possessed an unprecedented 6/6/5/4/6/6 hexacyclic system. Their structures were confirmed via comprehensive spectroscopic data analysis (IR, UV, NMR, HRESIMS), ECD calculation, and X-ray crystallography. Biological tests indicated that compounds 1, 4, 10, 12, 13, and 30 displayed significant anti-tomato spotted wilt virus (TSWV) activities compared with the positive control ningnanmycin. Moreover, compound 12 strongly inhibited the expression of the TSWV N, NSs, and NSm genes and TSWV NSs protein in plant host. Furthermore, compounds 4, 10, 12, 20, and 22 exhibited moderate insecticidal activities against TSWV thrip vector (Frankliniella occidentalis).


Subject(s)
Sophora , Tospovirus , Matrines/chemistry , Matrines/pharmacology , Tospovirus/drug effects , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Spectrophotometry , Crystallography, X-Ray , Virus Activation/drug effects , Animals , Insecticides/chemistry , Insecticides/pharmacology , Viral Nonstructural Proteins/genetics , Models, Molecular , Molecular Structure , Plant Roots
11.
J Asian Nat Prod Res ; 25(2): 163-170, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35675145

ABSTRACT

Two new isoflavones (1 and 2), as well as eight known ones were isolated from the roots of Sophora tonkinensis Gagnep. Compound 1 represents an unprecedented polymerization pattern constructed by isoflavone and cytisine. Their structures were elucidated by comprehensive spectroscopic data analysis, combined with ECD calculations. Compound 1 displayed significant anti-tobacco mosaic virus (TMV) activity compared with the positive control ningnanmycin. Moreover, compound 6 exhibited potent α-glucosidase inhibitory activity with IC50 value of 47.4 mg/L.


Subject(s)
Alkaloids , Isoflavones , Sophora , Isoflavones/pharmacology , Sophora/chemistry , Plant Roots/chemistry , Alkaloids/chemistry , Quinolizines/analysis
12.
Chem Biodivers ; 20(2): e202201097, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36583710

ABSTRACT

A new quinoline alkaloid, 5-hydroxy-6-methoxy-N-methyl-2-phenylquinoline-4-one (1), and seventeen known quinoline alkaloids (2-18) were isolated from the roots of Orixa japonica. The structure of 1 was determined by analysis of spectroscopic data. Among them, compounds 2, 3, and 13 were isolated from this plant for the first time. All isolates were screened for the anti-pathogenic fungi activities, including Rhizoctonia solani, Magnaporthe oryzae, and Phomopsis sp. The results showed that five compounds (4, 8, 10, 11, and 12) exhibited significant anti-pathogenic fungi effects at 50.0 µg/mL. In special, compound 10 exhibited the best antifungal activities toward R. solani and M. oryzae with the IC50 values of 37.86 and 44.72 µM, respectively, better than that of the positive control, hymexazol (IC50 121.21 and 1518.18 µM, respectively). Moreover, eleven new quinoline alkaloids derivatives (12a-12k) were designed and synthesized to investigate the structure-activity relationships (SARs). The SARs analysis indicated that the furo[2,3-b]quinoline skeleton and the methoxy at C-7 (compounds 8, 11, and 12) played a key role for improving the antifungal activities.


Subject(s)
Alkaloids , Quinolines , Antifungal Agents/pharmacology , Molecular Structure , Structure-Activity Relationship , Quinolines/chemistry , Fungi
13.
J Inflamm Res ; 15: 5649-5664, 2022.
Article in English | MEDLINE | ID: mdl-36211222

ABSTRACT

Background: The anti-inflammatory application of Guizhou ethnic medicine in the Karst area of China is mainly based on folk medicine experience, and there has been a lack of systematic research, leading to limited application of Guizhou ethnic medicine. Purpose: To evaluate the anti-inflammatory effects of compounds extracted from Guizhou ethnic medicine in the Karst area and investigate their molecular mechanisms. Methods and Results: Preliminarily, the anti-inflammatory effects of 181 compounds extracted from Guizhou ethnic medicine were screened in lipopolysaccharide (LPS)-stimulated peritoneal macrophages and the 41 compounds with anti-inflammatory effects were selected. Then, these 41 compounds with anti-inflammatory effects were investigated for their druggability and 18 compounds were selected. Thirdly, compound Hx-150, named isocorydine, was selected as the candidate compound. In vitro and in vivo, isocorydine inhibited LPS-induced TNF-α and IL-6 release from LPS-treated mouse peritoneal macrophages. Isocorydine decreased TNF-α, IL-6, and IL-1ß levels in the blood, lung, and spleen, and ameliorated lung tissue damage. Mechanistically, isocorydine had no effect on the mRNA expressions and protein levels of Tlr4, Myd88, and Traf6. Isocorydine also had no effect on the expression of RelA (encoding NFκB p65) mRNA, but inhibited phosphorylation of IκBα and NFκB p65 in the TLR4-mediated signaling pathway. Furthermore, isocorydine increased the cytoplasmic level of NFκB p65 and decreased its nuclear level in LPS-treated macrophages. Importantly, isocorydine upregulated Vdr mRNA (encoding the vitamin D receptor) expression and increased the nuclear VDR protein level. Conclusion: Many compounds from Guizhou ethnic medicine had potential anti-inflammatory activities. Among them, isocorydine has a strong anti-sepsis effect, which is tightly related to its upregulation of VDR expression and inhibition of NFκB p65 translocation into the nucleus, leading to reduced pro-inflammatory cytokines release and protection for LPS-challenged mice.

14.
J Org Chem ; 87(17): 11309-11318, 2022 09 02.
Article in English | MEDLINE | ID: mdl-35981284

ABSTRACT

Six novel Maillard reaction products (MRPs) (1-6) were isolated from the processed Thermopsis lanceolata R. Br. seed extract, along with one biogenetically related intermediate (7). Compounds 1-4 possessed three rare dimerization patterns constructed by cytisine, whereas compounds 5 and 6 represented the first example of the addition products of cytisine and 5,6-dihydroxy-4-hexanolide. Their structures were elucidated by comprehensive spectroscopic data analysis and quantum chemistry calculations including GIAO 13C{1H} NMR and ECD calculation, combined with single-crystal X-ray diffraction analysis. Biologically, compound 3 displayed significant anti-tobacco mosaic virus activity compared with the positive control ningnanmycin.


Subject(s)
Tobacco Mosaic Virus , Antiviral Agents/chemistry , Glycation End Products, Advanced , Plant Extracts/chemistry
15.
J Agric Food Chem ; 70(29): 9214-9226, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35849433

ABSTRACT

As part of our ongoing investigation of pesticide active quinolizidine alkaloids (QAs) from the family Fabaceae, the chemical constituents of the seeds of Thermopsis lanceolata R. Br. were systematically investigated. Bioassay-guided fractionation and purification of the crude extract led to the isolation of seventeen new QAs (1-17), including three new naturally occurring compounds (15-17), along with 15 known compounds (18-32). Their structures were elucidated by comprehensive spectroscopic data analysis (IR, UV, NMR, and HRESIMS) and quantum chemistry calculations (13C NMR and ECD). The antitomato spotted wilt virus activities and insecticidal activities against Aphis fabae, Nilaparvata lugens (Stal), and Tetranychus urticae of compounds 1-32 were screened using the lesion counting method, spray method, and rice-stem dipping method, respectively. Biological tests indicated that compounds 6, 9, 10, and 18 displayed significant anti-TSWV activities compared with the positive control ningnanmycin. Compounds 3, 4, and 5 showed better insecticidal activities against A. fabae with LC50 values of 10.07, 12.07, and 6.56 mg/L, respectively. Moreover, compounds 5, 18, and 24 exhibited moderate insecticidal activities against N. lugens (Stal) with LC50 values of 37.91, 53.44, and 31.21 mg/L, respectively. Furthermore, compounds 9 and 10 exhibited moderate insecticidal activities against T. urticae.


Subject(s)
Alkaloids , Aphids , Fabaceae , Insecticides , Quinolizidines , Alkaloids/analysis , Alkaloids/pharmacology , Animals , Insecticides/chemistry , Quinolizidines/pharmacology , Seeds/chemistry
16.
Chem Biodivers ; 19(6): e202200243, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35560497

ABSTRACT

Three new compounds named cynansteroid A (1), cynansteroid B (2) and cynansteroid C (3), together with nine known C21 -steroidal pregnane sapogenins (4-12) were isolated from the hydrolytic extract of the roots of Cynanchum auriculatum. The structures of cynansteroid A-C (1-3) were ascertained via the detailed analysis of the HR-ESI-MS, 1D and 2D NMR, and the calculated and experimental ECD data of cynansteroid B (2). Compound 11 displayed moderate inhibitory activity toward Verticillium dahliae Kleb (IC50 =37.15 µM), furthermore, compounds 11 and 12 showed significant inhibitory activity against Phomopsis sp. (IC50 =16.49 µM and 17.62 µM, respectively).


Subject(s)
Cynanchum , Sapogenins , Cynanchum/chemistry , Glycosides/chemistry , Plant Roots/chemistry , Pregnanes/chemistry , Pregnanes/pharmacology
17.
Fitoterapia ; 158: 105140, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35122885

ABSTRACT

Seven undescribed thermopsine-based alkaloids (1-7), including one undescribed biogenetically related intermediate (7), were isolated from the seeds of Thermopsis lanceolata R. Br. Compound 1 possessed a 6/6-6 tricyclic skeleton, while compounds 2-6 represented three rare dimerization patterns constructed by quinolizidine alkaloids. Their structures were elucidated by comprehensive spectroscopic data analysis as well as ECD calculations. Biologically, compound 6 displayed significant anti-Tomato spotted wilt virus (TSWV) activity compared with the positive control ningnanmycin. Moreover, compound 1 exhibited good insecticidal activity against Aphis fabae with LC50 value of 25.2 mg/L.


Subject(s)
Alkaloids , Insecticides , Alkaloids/chemistry , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Insecticides/chemistry , Insecticides/pharmacology , Molecular Structure , Seeds/chemistry
18.
Fitoterapia ; 158: 105158, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35176424

ABSTRACT

Seven new acylated C-glycosylflavones, oreocharioside A-G, together with two known compounds were isolated from the whole plant of Oreocharis auricula. Their structures were characterized by the comprehensive analysis of their NMR, IR, UV, CD spectra and HRESIMS data. All the new compounds were evaluated for the antioxidant and anti-inflammatory activities. The results showed that compounds 1 and 2 had significant DPPH and ABTS radical scavenging activities, with the IC50 values of 0.32-3.20 µg/mL. Compounds 2 and 3 exhibited the higher potency among all the new compounds in reducing TNF-α production.


Subject(s)
Anti-Inflammatory Agents , Antioxidants , Anti-Inflammatory Agents/pharmacology , Antioxidants/chemistry , Molecular Structure , Plant Extracts/chemistry
19.
J Asian Nat Prod Res ; 24(12): 1141-1149, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34984943

ABSTRACT

Two new (1 and 2) cytisine-type alkaloids that were chemically inseparable isomers (present in a 1:1 ratio) were identified from the seeds of Thermopsis lanceolata R. Br. Their structures were elucidated by comprehensive spectroscopic data analysis (IR, UV, NMR, HRESIMS) and ECD calculation. Compound 1 displayed significant anti-tobacco mosaic virus (TMV) activity, while compounds 1 and 2 displayed moderate insecticidal activities against Aphis fabae with LC50 value of 43.15 and 46.47 mg/L, respectively.


Subject(s)
Alkaloids , Fabaceae , Molecular Structure , Quinolizines/pharmacology , Alkaloids/pharmacology , Alkaloids/chemistry , Azocines , Seeds , Antiviral Agents/chemistry
20.
Nat Prod Res ; 36(5): 1151-1160, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33331176

ABSTRACT

Phytochemical studies led to the isolation of five new sesquiterpeniod esters, named balsamiferine N-R, along with ten known compounds (6-15) from the leaves of Blumea balsamifera (L.) DC. The skeletons of nine known sesquiterpeniods belong to guaiane and eudesmane. The structures of the new compounds including their absolute configurations were elucidated by comprehensive spectroscopic analysis, and quantum-chemical electronic circular dichroism (ECD) calculation. Compounds 3 and 4 showed significant inhibitory effects on influenza A virus (H3N2) with IC50 values of 46.23 µg/mL and 38.49 µg/mL, respectively. It was the first report on the anti-influenza A virus constituents from B. balsamifera.


Subject(s)
Asteraceae , Esters , Asteraceae/chemistry , Esters/analysis , Esters/pharmacology , Influenza A Virus, H3N2 Subtype , Plant Leaves/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...