Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 470
Filter
1.
Nat Commun ; 15(1): 4702, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830878

ABSTRACT

Magnetoelectric materials, which encompass coupled magnetic and electric polarizabilities within a single phase, hold great promises for magnetic controlled electronic components or electric-field controlled spintronics. However, the realization of ideal magnetoelectric materials remains tough due to the inborn competion between ferroelectricity and magnetism in both levels of symmetry and electronic structure. Herein, we introduce a methodology for constructing single phase paramagnetic ferroelectric molecule [TMCM][FeCl4], which shows low-magnetic-field magnetoelectricity at room temperature. By applying a low magnetic field (≤1 kOe), the halogen Cl‧‧‧Cl distance and the volume of [FeCl4]- anions could be manipulated. This structural change causes a characteristic magnetostriction hysteresis, resulting in a substantial deformation of ~10-4 along the a-axis under an in-plane magnetic field of 2 kOe. The magnetostrictive effect is further qualitatively simulated by density functional theory calculations. Furthermore, this mechanical deformation significantly dampens the ferroelectric polarization by directly influencing the overall dipole configuration. As a result, it induces a remarkable α31 component (~89 mV Oe-1 cm-1) of the magnetoelectric tensor. And the magnetoelectric coupling, characterized by the change of polarization, reaches ~12% under 40 kOe magnetic field. Our results exemplify a design methodology that enables the creation of room-temperature magnetoelectrics by leveraging the potent effects of magnetostriction.

2.
Cardiovasc Diabetol ; 23(1): 169, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750502

ABSTRACT

Diabetic heart disease (DHD) is a serious complication in patients with diabetes. Despite numerous studies on the pathogenic mechanisms and therapeutic targets of DHD, effective means of prevention and treatment are still lacking. The pathogenic mechanisms of DHD include cardiac inflammation, insulin resistance, myocardial fibrosis, and oxidative stress. Macrophages, the primary cells of the human innate immune system, contribute significantly to these pathological processes, playing an important role in human disease and health. Therefore, drugs targeting macrophages hold great promise for the treatment of DHD. In this review, we examine how macrophages contribute to the development of DHD and which drugs could potentially be used to target macrophages in the treatment of DHD.


Subject(s)
Diabetic Cardiomyopathies , Macrophages , Oxidative Stress , Signal Transduction , Humans , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Diabetic Cardiomyopathies/immunology , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/etiology , Animals , Oxidative Stress/drug effects , Fibrosis , Anti-Inflammatory Agents/therapeutic use , Myocardium/pathology , Myocardium/metabolism , Myocardium/immunology , Insulin Resistance , Inflammation Mediators/metabolism , Molecular Targeted Therapy
3.
BMC Public Health ; 24(1): 1347, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762539

ABSTRACT

BACKGROUND: The relationship between lung function and sarcopenia remains ambiguous. The primary aim of this study was to investigate the potential association between lung function and sarcopenia in the older adults, as well as to examine the mediating role of cognitive function in this relationship. METHODS: The participants were selected from a nationally representative population-based cohort in China. The peak expiratory flow (PEF) measurement was used to evaluate the lung function in older persons. The sarcopenia was diagnosed using the guidelines of the Asian Working Group for Sarcopenia (AWGS) in 2019. The Cox proportional hazard model was utilized to perform primary analyses of the relationship between PEF and sarcopenia. The mediating effect of cognitive function was evaluated using the counterfactual mediation method. RESULTS: This cohort study included 4,011 older adults (average age, 66.6 years; 53.3% males). During a follow-up period of 3.86 years, 349 individuals were diagnosed with sarcopenia. After adjusting for potential confounders, each one-standard-deviation increase in PEF was associated with a 28% reduction in the risk of sarcopenia (hazard ratio [HR]: 0.72; 95% confidence interval [CI]: 0.63, 0.80). There was a significant mediation of cognition for the association between PEF and incident sarcopenia, and the proportion mediated was 12.2% (95% CI: 4.5%, 23.1%). CONCLUSIONS: Older adults with impaired lung function are more likely to develop sarcopenia. Nevertheless, cognition can explain only a small portion of this association. Thus, other potential pathways between lung function and sarcopenia must be elucidated.


Subject(s)
Cognition , Sarcopenia , Humans , Sarcopenia/epidemiology , Male , Female , Aged , China/epidemiology , Cognition/physiology , Middle Aged , Peak Expiratory Flow Rate , Cohort Studies , Risk Factors , Proportional Hazards Models , Lung/physiopathology
4.
Chemphyschem ; : e202400297, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38797706

ABSTRACT

Materials that integrate magnetism, electricity and luminescence can not only improve the operational efficiency of devices, but also potentially generate new functions through their coupling. Therefore, multifunctional synergistic effects have broad application prospects in fields such as optoelectronic devices, information storage and processing, and quantum computing. However, in the research field of molecular materials, there are few reports on the synergistic multifunctional properties. The main reason is that there is insufficient awareness of how to obtain such material. In this brief review, we summarized the molecular materials with this characteristic. The structural phase transition of substances will cause changes in their physical properties, as the electronic configurations of the active unit in different structural phases are different. Therefore, we will classify and describe the multifunctional synergistic complexes based on the structural factors that cause the first-order phase transition of the complexes. This enables us to quickly screen complexes with synergistic responses to these properties through structural phase transitions, providing ideas for studying the synergistic response of physical properties in molecular materials.

5.
Biomed Pharmacother ; 176: 116829, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38820972

ABSTRACT

Bladder cancer (BC) is the most common malignancy of the urinary system and often recurs after tumor removal and/or is resistant to chemotherapy. In cancer cells, the activity of the signaling pathway changes significantly, affecting a wide range of cell activities from growth and proliferation to apoptosis, invasion and metastasis. Nrf2 is a transcription factor that plays an important role in cellular defense responses to a variety of cellular stresses. There is increasing evidence that Nrf2 acts as a tumor driver and that it is involved in the maintenance of malignant cell phenotypes. Abnormal expression of Nrf2 has been found to be common in a variety of tumors, including bladder cancer. Over-activation of Nrf2 can lead to DNA damage and the development of bladder cancer, and is also associated with various pathological phenomena of bladder cancer, such as metastasis, angiogenesis, and reduced toxicity and efficacy of therapeutic anticancer drugs to provide cell protection for cancer cells. However, the above process can be effectively inhibited or reversed by inhibiting Nrf2. Therefore, Nrf2 signaling may be a potential targeting pathway for bladder cancer. In this review, we will characterize this signaling pathway and summarize the effects of Nrf2 and crosstalk with other signaling pathways on bladder cancer progression. The focus will be on the impact of Nrf2 activation on bladder cancer progression and current therapeutic strategies aimed at blocking the effects of Nrf2. To better determine how to promote new chemotherapy agents, develop new therapeutic agents, and potential therapeutic targets.

6.
Epilepsy Behav ; 156: 109836, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38761448

ABSTRACT

OBJECTIVE: The study aimed to investigate the association between physical activity and the four dimensions of psychosocial status in adults with epilepsy. METHODS: The data of individuals with epilepsy utilized in this cross-sectional study were derived from the 2022 National Health Interview Survey(NHIS). Physical activity was analyzed based on walking, moderate or vigorous intensity physical activity and the 2018 Physical Activity Guidelines (PAG) for Americans. The psychosocial status of the participants was assessed using self-report questionnaires that evaluated life satisfaction, symptoms of depression and anxiety, and social functioning. A multivariate ordinal regression model was employed to estimate odds ratios (ORs) and corresponding 95% confidence intervals (CIs) following adjustment for potential confounding factors. RESULTS: In total of 424 individuals with epilepsy(mean age:48.0 years; male: 40.6 %) were included in this study. About 39.9 % of the participants met the 2018 PAG for aerobic activity. After controlling for potential confounding factors, individuals who adhered to the 2018 PAG for aerobic activity were found to have a higher likelihood of reporting increased life satisfaction (OR, 0.39; 95 % CI: 0.21, 0.71), decreased symptoms of depression (OR, 0.53; 95 % CI: 0.30, 0.94), and improved social functioning (OR, 0.42; 95 % CI: 0.24, 0.74). However, no significant association was observed between physical activity and anxiety symptoms among individuals with epilepsy. CONCLUSIONS: This study emphasizes that moderate to vigorous physical activity enhances psychosocial health in individuals with epilepsy. Nevertheless, it is important to note that a causal relationship cannot be inferred from these findings, and further verification through randomized controlled trials is necessary.

7.
Article in English | MEDLINE | ID: mdl-38568776

ABSTRACT

Dietary habits have been proven to have an impact on the microbial composition and health of the human gut. Over the past decade, researchers have discovered that gut microbiota can use nutrients to produce metabolites that have major implications for human physiology. However, there is no comprehensive system that specifically focuses on identifying nutrient deficiencies based on gut microbiota, making it difficult to interpret and compare gut microbiome data in the literature. This study proposes an analytical platform, NURECON, that can predict nutrient deficiency information in individuals by comparing their metagenomic information to a reference baseline. NURECON integrates a next-generation bacterial 16S rRNA analytical pipeline (QIIME2), metabolic pathway prediction tools (PICRUSt2 and KEGG), and a food compound database (FooDB) to enable the identification of missing nutrients and provide personalized dietary suggestions. Metagenomic information from total number of 287 healthy subjects was used to establish baseline microbial composition and metabolic profiles. The uploaded data is analyzed and compared to the baseline for nutrient deficiency assessment. Visualization results include gut microbial composition, related enzymes, pathways, and nutrient abundance. NURECON is a user-friendly online platform that provides nutritional advice to support dietitians' research or menu design.


Subject(s)
Diet , Gastrointestinal Microbiome , Humans , RNA, Ribosomal, 16S/genetics , Gastrointestinal Microbiome/genetics , Metagenome , Nutritional Requirements
8.
Front Public Health ; 12: 1336065, 2024.
Article in English | MEDLINE | ID: mdl-38601505

ABSTRACT

Background: Work stress is considered as a risk factor for coronary heart disease, but its link with heart rate variability (HRV) among heart attack survivors is unknown yet. The aim of this study was to investigate associations between baseline work stress and the changes of HRV over one-year after onset of acute coronary syndrome (ACS). Methods: Hundred and twenty-two patients with regular paid work before their first ACS episode were recruited into this hospital-based longitudinal cohort study. During hospitalization (baseline), all patients underwent assessments of work stress by job strain (JS) and effort-reward imbalance (ERI) models, and were assigned into low or high groups; simultaneously, sociodemographic and clinical data, as well depression, anxiety, and job burnout, were collected. Patients were followed up 1, 6, and 12 months after discharge, with HRV measurements at baseline and each follow-up point. Generalized estimating equations were used to analyze the effects of baseline work stress on HRV over the following 1 year. Results: After adjusting for baseline characteristics and clinical data, anxiety, depression, and burnout scores, high JS was not associated with any HRV measures during follow-up (all p > 0.10), whereas high ERI was significantly related to slower recovery of 5 frequency domain HRV measures (TP, HF, LF, VLF, and ULF) (all p < 0.001), and marginally associated with one time domain measure (SDNN) (p = 0.069). When mutually adjusting for both work stress models, results of ERI remained nearly unchanged. Conclusion: Work stress in terms of ERI predicted lower HRV during the one-year period after ACS, especially frequency domain measures.


Subject(s)
Acute Coronary Syndrome , Occupational Stress , Humans , Longitudinal Studies , Heart Rate/physiology , Cohort Studies , Hospitals
9.
Infection ; 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38679664

ABSTRACT

BACKGROUND: The stress hyperglycemia ratio (SHR), adjusted for average glycemic status, is suggested for assessing actual blood glucose levels. Its link with adverse outcomes is known in certain populations, yet its impact on sepsis patients' prognosis is unclear. This study explores the association between SHR and mortality in sepsis. METHODS: We included 13,199 sepsis patients in this study and categorized SHR into distinct groups. Additionally, we utilized restricted cubic spline analysis to evaluate the correlation between SHR as a continuous variable and mortality. The primary outcome was 1-year all-cause mortality. Logistic regression and Cox proportional hazards models were employed to assess the associations between the SHR and both in-hospital mortality and 1-year mortality, respectively. RESULTS: Among the study participants, 4,690 (35.5%) patients died during the 1-year follow-up. After adjusting for confounding variables, we identified a U-shaped correlation between SHR and 1-year mortality. Using an SHR of 0.99 as the reference point, the hazard ratio for predicted 1-year mortality increased by 1.17 (95% CI 1.08 to 1.27) per standard deviation above 0.99, whereas each standard deviation increase predicted the hazard ratio of 0.52 (95% CI 0.39 to 0.69) below 0.99. Furthermore, we found that SHR could enhance the predictive performance of conventional severity scores. CONCLUSION: There exists a U shaped association between SHR and mortality in sepsis patients, where both low and high SHR values are associated with an increased risk of poor outcomes.

10.
Medicine (Baltimore) ; 103(14): e37512, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38579077

ABSTRACT

ShenGui capsule (SGC), as a herbal compound, has significant effects on the treatment of heart failure (HF), but its mechanism of action is unclear. In this study, we aimed to explore the potential pharmacological targets and mechanisms of SGC in the treatment of HF using network pharmacology and molecular docking approaches. Potential active ingredients of SGC were obtained from the traditional Chinese medicine systems pharmacology database and analysis platform database and screened by pharmacokinetic parameters. Target genes of HF were identified by comparing the toxicogenomics database, GeneCards, and DisGeNET databases. Protein interaction networks and gene-disorder-target networks were constructed using Cytoscape for visual analysis. Gene ontology and Kyoto Encyclopedia of Genes and Genomes were also performed to identify protein functional annotations and potential target signaling pathways through the DAVID database. CB-DOCK was used for molecular docking to explore the role of IL-1ß with SGC compounds. Sixteen active ingredients in SGC were screened from the traditional Chinese medicine systems pharmacology database and analysis platform, of which 36 target genes intersected with HF target genes. Protein-protein interactions suggested that each target gene was closely related, and interleukin-1ß (IL-1ß) was identified as Hub gene. The network pharmacology analysis suggested that these active ingredients were well correlated with HF. Kyoto Encyclopedia of Genes and Genomes enrichment analysis suggested that target genes were highly enriched in pathways such as inflammation. Molecular docking results showed that IL-1ß binds tightly to SGC active components. This experiment provides an important research basis for the mechanism of action of SGC in the treatment of HF. In this study, the active compounds of SGC were found to bind IL-1ß for the treatment of heart failure.


Subject(s)
Drugs, Chinese Herbal , Heart Failure , Humans , Molecular Docking Simulation , Network Pharmacology , Heart Failure/drug therapy , Protein Interaction Maps , Databases, Factual , Interleukin-1beta , Medicine, Chinese Traditional , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
11.
Angew Chem Int Ed Engl ; : e202404515, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637293

ABSTRACT

Reductive amination of carbonyl compounds and nitro compounds represents a straightforward way to attain imines or secondary amines, but it is difficult to control the product selectivity. Herein, we report the selective formation of C-N or C=N bond readily manipulated through a solvent-induced hydrogen bond bridge, facilitating the swift photocatalytic reductive coupling process. The reductive-coupling of nitro compounds with carbonyl compounds using formic acid and sodium formate as the hydrogen donors over CdS nanosheets selectively generates imines with C=N bonds in acetonitrile solvent; while taking methanol as solvent, the C=N bonds are readily hydrogenated to the C-N bonds via hydrogen-bonding activation. Experimental and theoretical study reveals that the building of the hydrogen-bond bridge between the hydroxyl groups in methanol and the N atoms of the C=N motifs in imines facilitates the transfer of hydrogen atoms from CdS surface to the N atoms in imines upon illumination, resulting in the rapid hydrogenation of the C=N bonds to give rise to the secondary amines with C-N bonds. Our method provides a simple way to control product selectivity by altering the solvents in photocatalytic organic transformations.

12.
J Colloid Interface Sci ; 668: 171-180, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38677206

ABSTRACT

The effectiveness of photocatalytic molecular oxygen (O2) activation in pollutant removal relies on the targeted production of reactive oxygen species (ROS). Herein, we demonstrate the dual-pathway activation of O2 on BiOCl through zirconium (Zr) loading. The incorporation of Zr onto the surface of BiOCl not only leads to an increased generation of oxygen vacancies (OV) but also fosters a coupling between the d electrons of Zr and OV, forming dual-active sites known as Zr-oxygen vacancies (Zr-OV). Generally, OV adsorbs O2 and transfers one electron directly to form superoxide radicals (•O2-). Contrary to the conventional single-electron direct activation of O2 to form •O2-, Zr-OV exhibits more flexible coordination and superior electron-donating capabilities. It facilitates O2 conversion to peroxide radicals (O22-) and enables the subsequent generation of •O2- from O22-, significantly promotes the dechlorination and mineralization efficiency of chlorophenol under visible light. This study presents a straightforward strategy to precisely regulate ROS production by expanding pathways, shedding light on the critical role of managing ROS generation for effective pollutant purification.

13.
Clin Immunol ; 263: 110206, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38599263

ABSTRACT

Patients suffering from sepsis-induced acute lung injury (ALI) exhibit a high mortality rate, and their prognosis is closely associated with infiltration of neutrophils into the lungs. In this study, we found a significant elevation of CD64+ neutrophils, which highly expressed p75 neurotrophin receptor (p75NTR) in peripheral blood of mice and patients with sepsis-induced ALI. p75NTR+CD64+ neutrophils were also abundantly expressed in the lung of ALI mice induced by lipopolysaccharide. Conditional knock-out of the myeloid lineage's p75NTR gene improved the survival rates, attenuated lung tissue inflammation, reduced neutrophil infiltration and enhanced the phagocytic functions of CD64+ neutrophils. In vitro, p75NTR+CD64+ neutrophils exhibited an upregulation and compromised phagocytic activity in blood samples of ALI patients. Blocking p75NTR activity by soluble p75NTR extracellular domain peptide (p75ECD-Fc) boosted CD64+ neutrophils phagocytic activity and reduced inflammatory cytokine production via regulation of the NF-κB activity. The findings strongly indicate that p75NTR+CD64+ neutrophils are a novel pathogenic neutrophil subpopulation promoting sepsis-induced ALI.


Subject(s)
Acute Lung Injury , Mice, Inbred C57BL , Neutrophils , Phagocytosis , Receptors, IgG , Receptors, Nerve Growth Factor , Sepsis , Animals , Acute Lung Injury/immunology , Acute Lung Injury/etiology , Neutrophils/immunology , Neutrophils/metabolism , Sepsis/immunology , Sepsis/complications , Humans , Receptors, IgG/metabolism , Receptors, IgG/genetics , Receptors, IgG/immunology , Mice , Male , Phagocytosis/immunology , Receptors, Nerve Growth Factor/metabolism , Receptors, Nerve Growth Factor/genetics , Receptors, Nerve Growth Factor/immunology , Mice, Knockout , Lipopolysaccharides , Cytokines/metabolism , Cytokines/immunology , Lung/immunology , Lung/pathology , Female , NF-kappa B/metabolism , NF-kappa B/immunology , Nerve Tissue Proteins
14.
Neuroreport ; 35(9): 577-583, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38687887

ABSTRACT

Pyroptosis, a form of programmed cell death, drives inflammation in the context of cerebral ischemia/reperfusion. The molecular mechanism of pyroptosis underlying ischemia/reperfusion, however, is not fully understood. The transient middle cerebral artery occlusion was applied to wild-type and caspase-1 knockout mice. 2,3,5-Triphenyltetrazolium chloride-staining and immunohistochemistry were used to identify the ischemic region, and western blot and immunofluorescence for the examination of neuronal pyroptosis. The expression of inflammatory factors and the behavioral function assessments were further conducted to examine the effects of caspase-1 knockout on protection against ischemia/reperfusion injury. Ischemia/reperfusion injury increased pyroptosis-related signals represented by the overexpression of pyroptosis-related proteins including caspase-1 and gasdermin D (GSDMD). Meanwhile, the number of GSDMD positive neurons increased in penumbra by immunofluorescence staining. Compared with wild-type mice, those with caspase-1 knockout exhibited decreased levels of pyroptosis-related proteins following ischemia/reperfusion. Furthermore, ischemia/reperfusion attack-induced brain infarction, cerebral edema, inflammatory factors, and neurological outcomes were partially improved in caspase-1 knockout mice. The data indicate that pyroptosis participates in ischemia/reperfusion induced-damage, and the caspase-1 might be involved, it provides some new insights into the molecular mechanism of ischemia.


Subject(s)
Caspase 1 , Infarction, Middle Cerebral Artery , Pyroptosis , Reperfusion Injury , Animals , Male , Mice , Brain Ischemia/metabolism , Brain Ischemia/pathology , Caspase 1/metabolism , Disease Models, Animal , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Neurons/pathology , Pyroptosis/physiology , Reperfusion Injury/metabolism , Reperfusion Injury/pathology
15.
Gene ; 915: 148423, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38575100

ABSTRACT

Rice cytoplasmic male sterility (CMS) provides an exceptional model for studying genetic interaction within plant nuclei given its inheritable trait of non-functional male gametophyte. Gaining a comprehensive understanding of the genes and pathways associated with the CMS mechanism is imperative for improving the vigor of hybrid rice agronomically, such as its productivity. Here, we observed a significant decrease in the expression of a gene named OsRab7 in the anther of the CMS line (SJA) compared to the maintainer line (SJB). OsRab7 is responsible for vesicle trafficking and loss function of OsRab7 significantly reduced pollen fertility and setting rate relative to the wild type. Meanwhile, over-expression of OsRab7 enhanced pollen fertility in the SJA line while a decrease in its expression in the SJB line led to the reduced pollen fertility. Premature tapetum and abnormal development of microspores were observed in the rab7 mutant. The expression of critical genes involved in tapetum development (OsMYB103, OsPTC1, OsEAT1 and OsAP25) and pollen development (OsMSP1, OsDTM1 and OsC4) decreased significantly in the anther of rab7 mutant. Reduced activities of the pDR5::GUS marker in the young panicle and anther of the rab7 mutant were also observed. Furthermore, the mRNA levels of genes involved in auxin biosynthesis (YUCCAs), auxin transport (PINs), auxin response factors (ARFs), and members of the IAA family (IAAs) were all downregulated in the rab7 mutant, indicating its impact on auxin signaling and distribution. In summary, these findings underscore the importance of OsRab7 in rice pollen development and its potential link to cytoplasmic male sterility.


Subject(s)
Gene Expression Regulation, Plant , Oryza , Plant Infertility , Plant Proteins , Pollen , Oryza/genetics , Oryza/growth & development , Pollen/genetics , Pollen/growth & development , Plant Infertility/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Fertility/genetics , Cytoplasm/metabolism , Cytoplasm/genetics , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
16.
JMIR Hum Factors ; 11: e55802, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38530337

ABSTRACT

BACKGROUND: Ventricular tachycardia (VT) diagnosis is challenging due to the similarity between VT and some forms of supraventricular tachycardia, complexity of clinical manifestations, heterogeneity of underlying diseases, and potential for life-threatening hemodynamic instability. Clinical decision support systems (CDSSs) have emerged as promising tools to augment the diagnostic capabilities of cardiologists. However, a requirements analysis is acknowledged to be vital for the success of a CDSS, especially for complex clinical tasks such as VT diagnosis. OBJECTIVE: The aims of this study were to analyze the requirements for a VT diagnosis CDSS within the frameworks of knowledge and practice and to determine the clinical decision support (CDS) needs. METHODS: Our multidisciplinary team first conducted semistructured interviews with seven cardiologists related to the clinical challenges of VT and expected decision support. A questionnaire was designed by the multidisciplinary team based on the results of interviews. The questionnaire was divided into four sections: demographic information, knowledge assessment, practice assessment, and CDS needs. The practice section consisted of two simulated cases for a total score of 10 marks. Online questionnaires were disseminated to registered cardiologists across China from December 2022 to February 2023. The scores for the practice section were summarized as continuous variables, using the mean, median, and range. The knowledge and CDS needs sections were assessed using a 4-point Likert scale without a neutral option. Kruskal-Wallis tests were performed to investigate the relationship between scores and practice years or specialty. RESULTS: Of the 687 cardiologists who completed the questionnaire, 567 responses were eligible for further analysis. The results of the knowledge assessment showed that 383 cardiologists (68%) lacked knowledge in diagnostic evaluation. The overall average score of the practice assessment was 6.11 (SD 0.55); the etiological diagnosis section had the highest overall scores (mean 6.74, SD 1.75), whereas the diagnostic evaluation section had the lowest scores (mean 5.78, SD 1.19). A majority of cardiologists (344/567, 60.7%) reported the need for a CDSS. There was a significant difference in practice competency scores between general cardiologists and arrhythmia specialists (P=.02). CONCLUSIONS: There was a notable deficiency in the knowledge and practice of VT among Chinese cardiologists. Specific knowledge and practice support requirements were identified, which provide a foundation for further development and optimization of a CDSS. Moreover, it is important to consider clinicians' specialization levels and years of practice for effective and personalized support.


Subject(s)
Decision Support Systems, Clinical , Ichthyosiform Erythroderma, Congenital , Lipid Metabolism, Inborn Errors , Muscular Diseases , Tachycardia, Ventricular , Humans , Arrhythmias, Cardiac , Tachycardia, Ventricular/diagnosis , Asian People
17.
Eur J Clin Invest ; 54(6): e14194, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38438337

ABSTRACT

BACKGROUND: Substantial focus has been placed on atrial fibrillation (AF) treatment and associated stroke prevention rather than preventing AF itself. We employed Mendelian randomization (MR) approach to examine the causal relationships between 50 modifiable risk factors (RFs) and AF. METHODS: Instrumental variables for genetically predicted exposures were derived from corresponding genome-wide association studies (GWASs). Summary-level statistical data for AF were obtained from a GWAS meta-analysis (discovery dataset, N = 1,030,836) and FinnGen (validation dataset, N = 208,594). Univariable and multivariable MR analyses were performed, primarily using inverse variance weighted method with a series of robust sensitivity analyses. RESULTS: Genetic predisposition to insomnia, daytime naps, apnea, smoking initiation, moderate to vigorous physical activity and obesity traits, including body mass index, waist-hip ratio, central and peripheral fat/fat-free mass, exhibited significant associations with an increased risk of AF. Coffee consumption and ApoB had suggestive increased risks. Hypertension (odds ratio (OR) 95% confidence interval (CI): 5.26 (4.42, 6.24)), heart failure (HF) (OR 95% CI, 4.77 (2.43, 9.37)) and coronary artery disease (CAD) (OR 95% CI: 1.20 (1.16, 1.24)) were strongly associated with AF, while college degree, higher education attachment and HDL levels were associated with a decreased AF risk. Reverse MR found a bidirectional relationship between genetically predicted AF and CAD, HF and ischemic stroke. Multivariable analysis further indicated that obesity-related traits, systolic blood pressure and lower HDL levels independently contributed to the development of AF. CONCLUSIONS: This study identified several lifestyles and cardiometabolic factors that might be causally related to AF, underscoring the importance of a holistic approach to AF management and prevention.


Subject(s)
Atrial Fibrillation , Body Mass Index , Coronary Artery Disease , Genome-Wide Association Study , Heart Failure , Hypertension , Mendelian Randomization Analysis , Obesity , Smoking , Atrial Fibrillation/genetics , Atrial Fibrillation/epidemiology , Humans , Obesity/genetics , Obesity/complications , Risk Factors , Hypertension/genetics , Hypertension/epidemiology , Coronary Artery Disease/genetics , Coronary Artery Disease/epidemiology , Heart Failure/genetics , Heart Failure/epidemiology , Smoking/genetics , Waist-Hip Ratio , Genetic Predisposition to Disease , Exercise , Apolipoproteins B/genetics , Apolipoprotein B-100/genetics
18.
J Colloid Interface Sci ; 663: 891-901, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38447403

ABSTRACT

Exploring the real force that drives the separation of Coulomb-bound electron-hole pairs in the interface of heterojunction photocatalysts can establish a clear mechanism for efficient solar energy conversion efficiency. Herein, the formation of oxygen vacancy (Ov) and isolated Ti3+ was precisely regulated at the interface of g-C3N4/TiO2 Z-scheme heterojunction (g-C3N4/Ov-Ti3+-TiO2) by optimizing the opening degree of the calcination system, showing excellent production rate of CO and CH4 from CO2 photoreduction under visible light. This photocatalytic system also exhibited prominent stability. Combining theoretical calculation and characterization, the introduction of Ov and isolated Ti3+ on the interface could construct a charge transfer channel to break the forbidden transition of n â†’ π*, improving the separation process of photoexcited electron-hole pairs. The photoexcited electrons weakened the covalent interaction of CO bonds to promote the activation of adsorbed inert CO2 molecules, significantly reducing the energy barrier of the rate-limiting step during CO2 reduction. This work demonstrates the great application potential of reasonably regulating heterojunction interface for efficient photocatalytic CO2 reduction.

19.
New Phytol ; 242(1): 211-230, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38326975

ABSTRACT

Microbe-produced secondary metabolite phenazine-1-carboxylic acid (PCA) facilitates pathogen virulence and defense mechanisms against competitors. Magnaporthe oryzae, a causal agent of the devastating rice blast disease, needs to compete with other phyllosphere microbes and overcome host immunity for successful colonization and infection. However, whether M. oryzae produces PCA or it has any other functions remains unknown. Here, we found that the MoPHZF gene encodes the phenazine biosynthesis protein MoPhzF, synthesizes PCA in M. oryzae, and regulates appressorium formation and host virulence. MoPhzF is likely acquired through an ancient horizontal gene transfer event and has a canonical function in PCA synthesis. In addition, we found that PCA has a role in suppressing the accumulation of host-derived reactive oxygen species (ROS) during infection. Further examination indicated that MoPhzF recruits both the endoplasmic reticulum membrane protein MoEmc2 and the regulator of G-protein signaling MoRgs1 to the plasma membrane (PM) for MoRgs1 phosphorylation, which is a critical regulatory mechanism in appressorium formation and pathogenicity. Collectively, our studies unveiled a canonical function of MoPhzF in PCA synthesis and a noncanonical signaling function in promoting appressorium formation and host infection.


Subject(s)
Ascomycota , Magnaporthe , Oryza , Fungal Proteins/genetics , Fungal Proteins/metabolism , Oryza/metabolism , Phenazines/metabolism , Plant Diseases/genetics
20.
Phys Rev E ; 109(1-1): 014311, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38366511

ABSTRACT

Source location in quantum networks is a critical area of research with profound implications for cutting-edge fields such as quantum state tomography, quantum computing, and quantum communication. In this study, we present groundbreaking research on the technique and theory of source location in Szegedy's quantum networks. We develop a linear system evolution model for a Szegedy's quantum network system using matrix vectorization techniques. Subsequently, we propose a highly precise and robust source-location algorithm based on compressed sensing specifically tailored for Szegedy's quantum network. To validate the effectiveness and feasibility of our algorithm, we conduct numerical simulations on various model and real networks, yielding compelling results. These findings underscore the potential of our approach in practical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...