Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chin Med J (Engl) ; 131(19): 2287-2296, 2018 Oct 05.
Article in English | MEDLINE | ID: mdl-30246714

ABSTRACT

BACKGROUND: Shensong Yangxin Capsule (SSYX), traditional Chinese medicine, has been used to treat arrhythmias, angina, cardiac remodeling, cardiac fibrosis, and so on, but its effect on cardiac energy metabolism is still not clear. The objective of this study was to investigate the effects of SSYX on myocardium energy metabolism in angiotensin (Ang) II-induced cardiac hypertrophy. METHODS: We used 2 µl (10-6 mol/L) AngII to treat neonatal rat cardiomyocytes (NRCMs) for 48 h. Myocardial α-actinin staining showed that the myocardial cell volume increased. Expression of the cardiac hypertrophic marker-brain natriuretic peptide (BNP) messenger RNA (mRNA) also increased by real-time polymerase chain reaction (PCR). Therefore, it can be assumed that the model of hypertrophic cardiomyocytes was successfully constructed. Then, NRCMs were treated with 1 µl of different concentrations of SSYX (0.25, 0.5, and 1.0 µg/ml) for another 24 h. To explore the time-depend effect of SSYX on energy metabolism, 0.5 µg/ml SSYX was added into cells for 0, 6, 12, 24, and 48 h. Mitochondria was assessed by MitoTracker staining and confocal microscopy. mRNA and protein expression of mitochondrial biogenesis-related genes - Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), energy balance key factor - adenosine monophosphate-activated protein kinase (AMPK), fatty acids oxidation factor - carnitine palmitoyltransferase-1 (CPT-1), and glucose oxidation factor - glucose transporter- 4 (GLUT-4) were measured by PCR and Western blotting analysis. RESULTS: With the increase in the concentration of SSYX (from 0.25 to 1.0 µg/ml), an increased mitochondrial density in AngII-induced cardiomyocytes was found compared to that of those treated with AngII only (0.25 µg/ml, 18.3300 ± 0.8895 vs. 24.4900 ± 0.9041, t = 10.240, P < 0.0001; 0.5 µg/ml, 18.3300 ± 0.8895 vs. 25.9800 ± 0.8187, t = 12.710, P < 0.0001; and 1.0 µg/ml, 18.3300 ± 0.8895 vs. 24.2900 ± 1.3120, t = 9.902, P < 0.0001; n = 5 per dosage group). SSYX also increased the mRNA and protein expression of PGC-1α (0.25 µg/ml, 0.8892 ± 0.0848 vs. 1.0970 ± 0.0994, t = 4.319, P = 0.0013; 0.5 µg/ml, 0.8892 ± 0.0848 vs. 1.2330 ± 0.0564, t = 7.150, P < 0.0001; and 1.0 µg/ml, 0.8892 ± 0.0848 vs. 1.1640 ± 0.0755, t = 5.720, P < 0.0001; n = 5 per dosage group), AMPK (0.25 µg/ml, 0.8872 ± 0.0779 vs. 1.1500 ± 0.0507, t = 7.239, P < 0.0001; 0.5 µg/ml, 0.8872 ± 0.0779 vs. 1.2280 ± 0.0623, t = 9.379, P < 0.0001; and 1.0 µg/ml, 0.8872 ± 0.0779 vs. 1.3020 ± 0.0450, t = 11.400, P < 0.0001; n = 5 per dosage group), CPT-1 (1.0 µg/ml, 0.7348 ± 0.0594 vs. 0.9880 ± 0.0851, t = 4.994, P = 0.0007, n = 5), and GLUT-4 (0.5 µg/ml, 1.5640 ± 0.0599 vs. 1.7720 ± 0.0660, t = 3.783, P = 0.0117; 1.0 µg/ml, 1.5640 ± 0.0599 vs. 2.0490 ± 0.1280, t = 8.808, P < 0.0001; n = 5 per dosage group). The effect became more obvious with the increasing concentration of SSYX. When 0.5 µg/ml SSYX was added into cells for 0, 6, 12, 24, and 48 h, the expression of AMPK (6 h, 14.6100 ± 0.6205 vs. 16.5200 ± 0.7450, t = 3.456, P = 0.0250; 12 h, 14.6100 ± 0.6205 vs. 18.3200 ± 0.9965, t = 6.720, P < 0.0001; 24 h, 14.6100 ± 0.6205 vs. 21.8800 ± 0.8208, t = 13.160, P < 0.0001; and 48 h, 14.6100 ± 0.6205 vs. 23.7400 ± 1.0970, t = 16.530, P < 0.0001; n = 5 per dosage group), PGC-1α (12 h, 11.4700 ± 0.7252 vs. 16.9000 ± 1.0150, t = 7.910, P < 0.0001; 24 h, 11.4700 ± 0.7252 vs. 20.8800 ± 1.2340, t = 13.710, P < 0.0001; and 48 h, 11.4700 ± 0.7252 vs. 22.0300 ± 1.4180, t = 15.390; n = 5 per dosage group), CPT-1 (24 h, 15.1600 ± 1.0960 vs. 18.5800 ± 0.9049, t = 6.048, P < 0.0001, n = 5), and GLUT-4 (6 h, 10.2100 ± 0.9485 vs. 12.9700 ± 0.8221, t = 4.763, P = 0.0012; 12 h, 10.2100 ± 0.9485 vs. 16.9100 ± 0.8481, t = 11.590, P < 0.0001; 24 h, 10.2100 ± 0.9485 vs. 19.0900 ± 0.9797, t = 15.360, P < 0.0001; and 48 h, 10.2100 ± 0.9485 vs. 14.1900 ± 0.9611, t = 6.877, P < 0.0001; n = 5 per dosage group) mRNA and protein increased gradually with the prolongation of drug action time. CONCLUSIONS: SSYX could increase myocardial energy metabolism in AngII-induced cardiac hypertrophy. Therefore, SSYX might be considered to be an alternative therapeutic remedy for myocardial hypertrophy.


Subject(s)
Cardiomegaly/drug therapy , Energy Metabolism , Medicine, Chinese Traditional , Myocytes, Cardiac/drug effects , Angiotensin II/metabolism , Animals , Myocardium , Rats
2.
Biomed Environ Sci ; 28(8): 595-605, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26383597

ABSTRACT

OBJECTIVE: To identify the bamboo VOCs (volatile organic compounds) effect on animal physiological indices, which associated with human health. METHODS: GC/MS was used to analyze the volatile organic compounds from Moso bamboo (Phyllostachys heterocyla cv. pubescens). The effect of VOCs on environmental health was evaluated by analyzing the metabolic indices of the type 2 diabetic mouse model. RESULTS: Spectra of VOC generated by GC/MS were blasted against an in-house MS library confirming the identification of 33 major components that were manually validated. The relative constituent compounds as a percentage of total VOCs determined were alcohols (34.63%), followed by ether (22.02%), aldehyde (15.84%), ketone (11.47%), ester (4.98%), terpenoid (4.38%), and acids (3.83%). Further experimentation established that the metabolic incidence of the disease can be improved if treated with vanillin, leaf alcohol, ß-ionone and methyl salicylate. The effects of these VOCs on type 2 diabetes were evident in the blood lipid and blood glucose levels. CONCLUSION: Our model suggests that VOCs can potentially control the metabolic indices in type 2 diabetes mice. This experiment data also provides the scientific basis for the comprehensive utilization of ornamental bamboos and some reference for other similar study of environmental plants.


Subject(s)
Bambusa/chemistry , Environmental Health , Volatile Organic Compounds/pharmacology , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/metabolism , Disease Models, Animal , Gas Chromatography-Mass Spectrometry , Lipids/blood , Male , Mice , Mice, Inbred ICR
3.
Mol Med Rep ; 8(1): 250-4, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23660620

ABSTRACT

Accumulating evidence suggests that Rho-associated kinase (ROCK) may be important in the pathogenesis of atherosclerosis and coronary vasospasm. In the present study, we investigated whether ROCK activity is increased in acute coronary syndrome (ACS) patients. Twenty-one patients with ACS (12 males, mean age 58.0±8.0 years) and 20 control subjects (10 males, mean age 55.0±6.0 years) were enrolled. Blood samples were obtained and demographics were recorded. Peripheral leukocyte ROCK activity was determined by the ratio of phospho-myosin­binding subunit (P-MBS) on myosin light-chain phosphatase to total MBS. Compared with the control subjects, ROCK activity was significantly increased in ACS patients (0.69±0.07 vs. 0.45±0.04, P<0.001). There was no apparent correlation between the lipid levels (total cholesterol and low-density lipoprotein) and ROCK activity (r=0.17, P>0.05; r=0.08, P>0.05; respectively). However, ROCK activity correlated with mean arterial pressure (r=0.58; P<0.01). ROCK activity is increased in ACS patients indicating that this may be a novel serological marker of ACS.


Subject(s)
Acute Coronary Syndrome/enzymology , Leukocytes/enzymology , rho-Associated Kinases/metabolism , Acute Coronary Syndrome/diagnosis , Aged , Biomarkers , Case-Control Studies , Enzyme Activation , Female , Humans , Male , Middle Aged , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...