Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
J Ethnopharmacol ; 329: 118130, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38565407

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Psoraleae Fructus (Bu Gu Zhi) is the fruit of Psoralea corylifolia L. (PCL) and has been used for centuries in traditional Chinese medicine formulas to treat osteoporosis (OP). A new drug called "BX" has been developed from PCL, but its mechanism for treating OP is not yet fully understood. AIM OF THE STUDY: To explore the mechanism of action of BX in the treatment of ovariectomy-induced OP based function-oriented multi-omics analysis of gut microbiota (GM) and metabolites. MATERIALS AND METHODS: C57BL/6 mice were bilaterally ovariectomized to replicate the OP model. The therapeutic efficacy of BX was evaluated by bone parameters (BMD, BV/TV, Tb.N, Tb.Sp), hematoxylin and eosin (H&E) staining results, and determination of bone formation markers procollagen type Ⅰ amino-terminal peptide (PⅠNP) and bone-specific alkaline phosphatase (BALP). Serum and fecal metabolomics and high-throughput 16S rDNA sequencing were performed to evaluate effects on endogenous metabolites and GM. In addition, an enzyme-based functional correlation algorithm (EBFC) algorithm was used to investigate functional correlations between GM and metabolites. RESULTS: BX improved OP in OVX mice by increasing BMD, BV/TV, serum PⅠNP, BALP, and improving Tb.N and Tb.Sp. A total of 59 differential metabolites were identified, and 9 metabolic pathways, including arachidonic acid metabolism, glycerophospholipid metabolism, purine metabolism, and tryptophan metabolism, were found to be involved in the progression of OP. EBFC analysis results revealed that the enzymes related to purine and tryptophan metabolism, which are from Lachnospiraceae_NK4A136_group, Blautia, Rs-E47_termite_group, UCG-009, and Clostridia_UCG-014, were identified as the intrinsic link between GM and metabolites. CONCLUSIONS: The regulation of GM and restoration of metabolic disorders may be the mechanisms of action of BX in alleviating OP. This research provides insights into the function-oriented mechanism discovery of traditional Chinese medicine in the treatment of OP.


Subject(s)
Coumarins , Gastrointestinal Microbiome , Mice, Inbred C57BL , Osteoporosis , Ovariectomy , Psoralea , Animals , Psoralea/chemistry , Female , Osteoporosis/drug therapy , Coumarins/pharmacology , Coumarins/isolation & purification , Coumarins/therapeutic use , Gastrointestinal Microbiome/drug effects , Mice , Bone Density/drug effects , Metabolomics , Disease Models, Animal , Fruit , Multiomics
2.
ACS Appl Mater Interfaces ; 16(13): 16515-16521, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38507219

ABSTRACT

Hybrid inorganic-organic perovskites with chiral response and outstanding optoelectronic characteristics are promising materials for next-generation spin-optoelectronics. In particular, two-dimensional (2D) perovskites are promising chiroptical candidates due to their unique ability to incorporate chiral organic cations into their crystal structure, which imparts chirality. To enable their practical applications in chiral optoelectronic devices, it is essential to achieve an anisotropy factor (gCD ∼ 2) in chiral 2D perovskites. Currently, chiral 2D perovskites exhibit a relatively low gCD of 3.1 × 10-3. Several approaches have been explored to improve the chiral response of chiral 2D perovskites, including tailoring the molecular structure of chiral cations and increasing the degree of octahedral tilting in the perovskite lattice. However, current methods for chiral amplification have only achieved a moderate enhancement of gCD by 2-fold and are often accompanied by undesirable shifts or inversion in the circular dichroism spectra. There is a need for a more efficient approach to enhancing the chirality in 2D perovskites. Here, we report an innovative coassembly process that allows us to seamlessly grow chiral 2D perovskites on supramolecular helical structures. We discover that the interactions between perovskites and chiral supramolecular structures promote crystal lattice distortion in perovskites, which improves the chirality of 2D perovskites. Additionally, the obtained hierarchical coassembly can effectively harness the structural chirality of the supramolecular helices. The multilevel chiral enhancement leads to an enhancement in gCD by 2.7-fold without compromising the circular dichroism spectra of 2D perovskites.

3.
Neural Regen Res ; 18(6): 1213-1219, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36453396

ABSTRACT

Cognitive decline in Alzheimer's disease correlates with the extent of tau pathology, in particular tau hyperphosphorylation that initially appears in the transentorhinal and related regions of the brain including the hippocampus. Recent evidence indicates that tau hyperphosphorylation caused by either amyloid-ß or long-term depression, a form of synaptic weakening involved in learning and memory, share similar mechanisms. Studies from our group and others demonstrate that long-term depression-inducing low-frequency stimulation triggers tau phosphorylation at different residues in the hippocampus under different experimental conditions including aging. Conversely, certain forms of long-term depression at hippocampal glutamatergic synapses require endogenous tau, in particular, phosphorylation at residue Ser396. Elucidating the exact mechanisms of interaction between tau and long-term depression may help our understanding of the physiological and pathological functions of tau/tau (hyper)phosphorylation. We first summarize experimental evidence regarding tau-long-term depression interactions, followed by a discussion of possible mechanisms by which this interplay may influence the pathogenesis of Alzheimer's disease. Finally, we conclude with some thoughts and perspectives on future research about these interactions.

4.
J Alzheimers Dis ; 89(1): 335-350, 2022.
Article in English | MEDLINE | ID: mdl-35871344

ABSTRACT

BACKGROUND: Cognitive decline in Alzheimer's disease (AD) correlates with the extent of tau pathology, in particular tau hyperphosphorylation, which is strongly age-associated. Although elevation of cerebrospinal fluid or blood levels of phosphorylated tau (p-Tau) at residues Thr181 (p-Tau181), Thr217 (p-Tau217), and Thr231 (p-Tau231) are proposed to be particularly sensitive markers of preclinical AD, the generation of p-Tau during brain activity is poorly understood. OBJECTIVE: To study whether the expression levels of p-Tau181, p-Tau217, and p-Tau231 can be enhanced by physiological synaptic long-term depression (LTD) which has been linked to the enhancement of p-Tau in hippocampus. METHODS: In vivo electrophysiology was performed in urethane anesthetized young adult and aged male rats. Low frequency electrical stimulation (LFS) was used to induce LTD at CA3 to CA1 synapses. The expression level of p-Tau and total tau was measured in dorsal hippocampus using immunofluorescent staining and/or western blotting. RESULTS: We found that LFS enhanced p-Tau181 and p-Tau217 in an age-dependent manner in the hippocampus of live rats. In contrast, phosphorylation at residues Thr231, Ser202/Thr205, and Ser396 appeared less sensitive to LFS. Pharmacological antagonism of either N-methyl-D-aspartate or metabotropic glutamate 5 receptors inhibited the elevation of both p-Tau181 and p-Tau217. Targeting the integrated stress response, which increases with aging, using a small molecule inhibitor ISRIB, prevented the enhancement of p-Tau by LFS in aged rats. CONCLUSION: Together, our data provide a novel in vivo means to uncover brain plasticity-related cellular and molecular processes of tau phosphorylation at key sites in health and aging.


Subject(s)
Alzheimer Disease , Depression , Alzheimer Disease/cerebrospinal fluid , Animals , Biomarkers/cerebrospinal fluid , Male , Neuronal Plasticity , Phosphorylation , Rats , Synapses/metabolism , tau Proteins/metabolism
5.
Transl Psychiatry ; 12(1): 96, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35260557

ABSTRACT

Soluble amyloid-ß-protein (Aß) oligomers, a major hallmark of AD, trigger the integrated stress response (ISR) via multiple pathologies including neuronal hyperactivation, microvascular hypoxia, and neuroinflammation. Increasing eIF2α phosphorylation, the core event of ISR, facilitates metabotropic glutamate receptor (mGluR)-dependent long-term depression (LTD), and suppressing its phosphorylation has the opposite effect. Having found the facilitation of mGluR5-LTD by Aß in live rats, we wondered if suppressing eIF2α phosphorylation cascade would protect against the synaptic plasticity and cognitive disrupting effects of Aß. We demonstrate here that the facilitation of mGluR5-LTD in a delayed rat model by single i.c.v. injection of synthetic Aß1-42. Systemic administration of the small-molecule inhibitor of the ISR called ISRIB (trans-isomer) prevents Aß-facilitated LTD and abrogates spatial learning and memory deficits in the hippocampus in exogenous synthetic Aß-injected rats. Moreover, ex vivo evidence indicates that ISRIB normalizes protein synthesis in the hippocampus. Targeting the ISR by suppressing the eIF2α phosphorylation cascade with the eIF2B activator ISRIB may provide protective effects against the synaptic and cognitive disruptive effects of Aß which likely mediate the early stage of sporadic AD.


Subject(s)
Alzheimer Disease , Stress, Physiological , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Depression , Hippocampus/metabolism , Memory Disorders/drug therapy , Memory Disorders/metabolism , Neuronal Plasticity , Peptide Fragments/metabolism , Rats , Receptor, Metabotropic Glutamate 5/metabolism , Spatial Memory
6.
Front Cardiovasc Med ; 9: 753959, 2022.
Article in English | MEDLINE | ID: mdl-35198610

ABSTRACT

BACKGROUND AND OBJECTIVES: Spinal cord stimulation can prevent myocardial ischemia and reperfusion arrhythmias, but the relevant neurons and mechanisms remain unknown. Thus, this study applied optogenetic techniques to selectively activate glutamatergic neurons at the thoracic spinal cord (T1 segment) for examining the anti-arrhythmia effects during acute myocardial ischemic-reperfusion. METHODS: Adeno-associated viruses (AAVs) carrying channelrhodopsin-2 (ChR2, a blue-light sensitive ion channel) CaMKIIα-hChR2(H134R) or empty vector were injected into the dorsal horn of the T1 spinal cord. Four weeks later, optogenetic stimulation with a 473-nm blue laser was applied for 30 min. Then, the myocardial ischemia-reperfusion model was created by occlusion of the anterior descending coronary artery for ischemia (15 min) and reperfusion (30 min). Cardiac electrical activity and sympathetic nerve activity were assessed continuously. RESULTS: CaMKIIα-hChR2 viral transfection is primarily expressed in glutamatergic neurons in the spinal cord. Selective optical stimulation of the T1 dorsal horn in the ChR2 rat reduced the ventricular arrhythmia and arrhythmia score during myocardial ischemia-reperfusion, preventing the over-activation of cardiac sympathetic nerve activity. Additionally, optical stimulation also reduced the action potential duration at the 90% level (APD90) and APD dispersion. CONCLUSION: Selective optical stimulation T1 glutamatergic neurons of dorsal horn prevent ischemia-reperfusion arrhythmias. The mechanism may be associated with inhibiting sympathetic nervous system overexcitation and increasing APD dispersion during myocardial ischemia-reperfusion.

7.
Pharmacology ; 107(1-2): 102-110, 2022.
Article in English | MEDLINE | ID: mdl-34718242

ABSTRACT

INTRODUCTION: Ghrelin is an endogenous peptide with potential protective effects on ischemic heart. METHODS: Synthetic ghrelin was administered (100 µg·kg-1 subcutaneous injection, twice daily) for 4 weeks in a rat model of myocardial infarction (MI) with coronary artery occlusion. At the 5th week, electrocardiogram, monophasic action potentials and autonomic nerve function were evaluated. Cardiac tyrosine hydroxylase (TH) was determined by immunofluorescence staining. RESULTS: MI significantly increased sympathetic nerve activity (SNA) and ventricular arrhythmias, and prolonged APD dispersion and APD alternans (p < 0.01). Ghrelin treatment significantly increased ventricular fibrillation threshold (VFT), shortened APD dispersion and APD alternans, inhibited SNA and promoted vagus nerve activities (p < 0.01). Ghrelin also markedly reversed abnormal expression of TH in the peri-infarcted area of the heart (p < 0.01). DISCUSSION/CONCLUSION: Ghrelin provides a sustained electrophysiological protection by the increase of VFT and improvement of APD dispersion and APD alternans. The mechanism may be related to the regulation of autonomic nerve and sympathetic nerve remodeling. Thus, ghrelin represents a novel drug to prevent ventricular arrhythmia in ischemic heart disease.


Subject(s)
Arrhythmias, Cardiac/drug therapy , Cardiotonic Agents/pharmacology , Ghrelin/pharmacology , Myocardial Infarction/drug therapy , Action Potentials/drug effects , Animals , Arrhythmias, Cardiac/etiology , Autonomic Pathways/drug effects , Cardiotonic Agents/therapeutic use , Disease Models, Animal , Electrocardiography/drug effects , Ghrelin/therapeutic use , Male , Myocardial Infarction/complications , Rats, Sprague-Dawley , Sympathetic Nervous System/drug effects , Tyrosine 3-Monooxygenase/metabolism , Vagus Nerve/drug effects , Ventricular Fibrillation/drug therapy
8.
J Pharmacol Exp Ther ; 378(3): 197-206, 2021 09.
Article in English | MEDLINE | ID: mdl-34215702

ABSTRACT

Phosphorylation of the eukaryotic translation initiation factor 2 α-subunit, which subsequently upregulates activating transcription factor 4 (ATF4), is the core event in the integrated stress response (ISR) pathway. Previous studies indicate phosphorylation of eukaryotic translation initiation factor 2 ɑ-subunit in atrial tissue in response to atrial fibrillation (AF). This study investigated the role of ISR pathway in experimental AF by using a small-molecule ISR inhibitor (ISRIB). Accordingly, rats were subjected to coronary artery occlusion to induce myocardial infarction (MI), or sham operation, and received either trans-ISRIB (2 mg/kg/d, i.p.) or vehicle for seven days. Thereafter, animals were subjected to the AF inducibility test by transesophageal rapid burst pacing followed by procurement of left atrium (LA) for assessment of atrial fibrosis, inflammatory indices, autophagy-related proteins, ISR activation, ion channel, and connexin 43 expression. Results showed a significant increase in the AF vulnerability and the activation of ISR in LA as evidenced by enhanced eukaryotic translation initiation factor 2 ɑ-subunit phosphorylation. ISRIB treatment suppressed upregulation of ATF4, fibrosis as indexed by determination of α-smooth muscle actin and collagen levels, inflammatory macrophage infiltration (i.e., CD68 and inducible nitric oxide synthase/CD68-positive macrophage), and autophagy as determined by expression of light chain 3. Further, ISRIB treatment reversed the expression of relevant ion channel (i.e., the voltage-gated sodium channel 1.5 , L-type voltage-dependent calcium channel 1.2, and voltage-activated A-type potassium ion channel 4.3) and connexin 43 remodeling. Collectively, the results suggest that the ISR is a key pathway in pathogenesis of AF, post-MI, and represents a novel target for treatment of AF. SIGNIFICANCE STATEMENT: The activation of integrated stress response (ISR) pathway as evidenced by enhanced eukaryotic translation initiation factor 2 ɑ-subunit phosphorylation in left atrium plays a key role in atrial fibrillation (AF). ISR inhibitor (ISRIB) reduces AF occurrence and atrial proarrhythmogenic substrate. The beneficial action of ISRIB may be mediated by suppressing ISR pathway-related cardiac fibrosis, inflammatory macrophage infiltration, autophagy, and restoring the expression of ion channel and connexin 43. This study suggests a key dysfunctional role for ISR in pathogenesis of AF with implications for novel treatment.


Subject(s)
Atrial Fibrillation , Animals , Heart Atria , Phosphorylation , Rats
9.
J Neurosci ; 41(31): 6753-6774, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34099513

ABSTRACT

The development, persistence and relapse of drug addiction require drug memory that generally develops with drug administration-paired contextual stimuli. Adult hippocampal neurogenesis (AHN) contributes to cocaine memory formation; however, the underlying mechanism remains unclear. Male mice hippocampal expression of Tau was significantly decreased during the cocaine-associated memory formation. Genetic overexpression of four microtubule-binding repeats Tau (4R Tau) in the mice hippocampus disrupted cocaine memory by suppressing AHN. Furthermore, 4R Tau directly interacted with phosphoinositide 3-kinase (PI3K)-p85 and impaired its nuclear translocation and PI3K-AKT signaling, processes required for hippocampal neuron proliferation. Collectively, 4R Tau modulates cocaine memory formation by disrupting AHN, suggesting a novel mechanism underlying cocaine memory formation and provide a new strategy for the treatment of cocaine addiction.SIGNIFICANCE STATEMENT Drug memory that generally develops with drug-paired contextual stimuli and drug administration is critical for the development, persistence and relapse of drug addiction. Previous studies have suggested that adult hippocampal neurogenesis (AHN) plays a role in cocaine memory formation. Here, we showed that Tau was significantly downregulated in the hippocampus in the cocaine memory formation. Tau knock-out (KO) promoted AHN in the hippocampal dentate gyrus (DG), resulting in the enhanced memory formation evoked by cocaine-cue stimuli. In contrast, genetically overexpressed 4R Tau in the hippocampus disrupted cocaine-cue memory by suppressing AHN. In addition, 4R Tau interacted directly with phosphoinositide 3-kinase (PI3K)-p85 and hindered its nuclear translocation, eventually repressing PI3K-AKT signaling, which is essential for hippocampal neuronal proliferation.


Subject(s)
Cocaine-Related Disorders/metabolism , Hippocampus/metabolism , Memory/physiology , Neurogenesis/physiology , tau Proteins/metabolism , Animals , Male , Mice , Mice, Inbred C57BL , Protein Isoforms
10.
Eur J Pharmacol ; 901: 174096, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33848542

ABSTRACT

Depression after myocardial infarction (MI) and chronic heart failure (CHF) is a common condition that is resistant to anti-depressive drugs. Ghrelin (a peptide hormone) shows dual protective effects on heart and brain. Whether ghrelin treatment attenuated depression after MI was investigated. Coronary artery occlusion was performed to induce MI and subsequent CHF in rats. Ghrelin (100 µg/kg in 0.5 ml of saline) or vehicle (0.5 ml of saline) was injected subcutaneously twice a day for 4 weeks. At week 5, all the animals underwent behavioral assessments including sucrose preference test (SPT), elevated plus maze test (EPM), and open field test (OFT). After cardiac function analysis, brain tissues were processed to determine inflammatory cytokines and microglial activations in hippocampus. Results showed that ghrelin substantially improved cardiac dysfunction, infarction size, and cardiac remodeling and modulated the release of inflammatory cytokines and the increase of Iba-1 positive microglia and glial fibrillary acidic protein-positive astrocytes in the CA1 area of hippocampus. Behavioral tests revealed that this treatment remarkably increased sucrose preference and mobile times and numbers. These findings provided evidence that peripheral ghrelin administration inhibits depression-like behavior and neuroinflammation and thus could be a new approach for the treatment of CHF-associated depression.


Subject(s)
Depression/drug therapy , Depression/etiology , Ghrelin/therapeutic use , Heart Failure/drug therapy , Myocardial Infarction/complications , Neuritis/drug therapy , Animals , Anxiety/prevention & control , Anxiety/psychology , Behavior, Animal/drug effects , Cytokines/metabolism , Glial Fibrillary Acidic Protein/metabolism , Hemodynamics/drug effects , Hippocampus/drug effects , Macrophage Activation/drug effects , Male , Microglia/drug effects , Rats , Rats, Sprague-Dawley
11.
Eur J Pharmacol ; 867: 172836, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31811858

ABSTRACT

Excessive sympathetic activity is associated with heart failure and ventricular arrhythmias, which regulated by enhanced cardiac sympathetic afferent reflex, which can be blunted by resiniferatoxin, a selective receptor agonist of transient vanilloid potential 1 (TRPV1) + primary sensory afferents. The present study is aimed to determine whether intrathecal resiniferatoxin application affect cardiac sympathetic tone and electrophysiology, furtherly create a new effective strategy to prevent lethal arrhythmias in chronic heart failure. Four weeks after coronary artery occlusion to induce heart failure in rats, RTX (2µg/10 µl) or vehicle was injected intrathecally into the T2/T3 interspace. Cardiac sympathetic nerve activities (CSNA) and cardiac electrophysiology were evaluated two weeks later. Intrathecal resiniferatoxin significantly and selectively abolished the afferent markers expression (TRPV1 and calcitonin gene-related peptide) in dorsal horn and reduced overactivated CSNA. Electrophysiological studies revealed that resiniferatoxin administration intrathecally significantly reversed the prolongation of action potential duration (APD) and APD alternan, reduced the inducibilities of ventricular arrhythmias. Moreover, the over-activated calcium handling related protein CaMKII and RyR2 in heart failure was reversed by resiniferatoxin administration. In conclusion, these results firstly demonstrate that central chemo-ablation of the TRPV1+ afferents in spinal cord prevent heart from ventricular arrhythmias in heart failure via selectively blunting cardiac sympathetic afferent projection into spinal cord, which suggest a novel promising therapeutic method for anti-arrhythmia in heart failure.


Subject(s)
Arrhythmias, Cardiac/prevention & control , Autonomic Nerve Block/methods , Diterpenes/administration & dosage , Ganglia, Sympathetic/drug effects , Heart Failure/therapy , Action Potentials/drug effects , Action Potentials/physiology , Animals , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/physiopathology , Calcitonin Gene-Related Peptide/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Disease Models, Animal , Ganglia, Sympathetic/physiopathology , Heart/drug effects , Heart/innervation , Heart/physiopathology , Heart Failure/complications , Heart Failure/physiopathology , Heart Rate/drug effects , Heart Rate/physiology , Humans , Injections, Spinal , Male , Neurons, Afferent/drug effects , Neurons, Afferent/physiology , Rats , Ryanodine Receptor Calcium Release Channel/metabolism , Spinal Cord Dorsal Horn/drug effects , Spinal Cord Dorsal Horn/metabolism , TRPV Cation Channels/agonists , TRPV Cation Channels/metabolism
12.
J Neuroinflammation ; 15(1): 93, 2018 Mar 23.
Article in English | MEDLINE | ID: mdl-29571298

ABSTRACT

BACKGROUND: The nucleus accumbens in the midbrain dopamine limbic system plays a key role in cocaine addiction. Toll-like receptors (TLRs) are important pattern-recognition receptors (PPRs) in the innate immune system that are also involved in drug dependence; however, the detailed mechanism is largely unknown. METHODS: The present study was designed to investigate the potential role of TLR3 in cocaine addiction. Cocaine-induced conditioned place preference (CPP), locomotor activity, and self-administration were used to determine the effects of TLR3 in the rewarding properties of cocaine. Lentivirus-mediated re-expression of Tlr3 (LV-TLR3) was applied to determine if restoration of TLR3 expression in the NAc is sufficient to restore the cocaine effect in TLR3-/- mice. The protein levels of phospho-NF-κB p65, IKKß, and p-IκBα both in the cytoplasm and nucleus of cocaine-induced CPP mice were detected by Western blot. RESULTS: We showed that both TLR3 deficiency and intra-NAc injection of TLR3 inhibitors significantly attenuated cocaine-induced CPP, locomotor activity, and self-administration in mice. Importantly, the TLR3-/- mice that received intra-NAc injection of LV-TLR3 displayed significant increases in cocaine-induced CPP and locomotor activity. Finally, we found that TLR3 inhibitor reverted cocaine-induced upregulation of phospho-NF-κB p65, IKKß, and p-IκBα. CONCLUSIONS: Taken together, our results describe that TLR3 modulates cocaine-induced behaviors and provide further evidence supporting a role for central pro-inflammatory immune signaling in drug reward. We propose that TLR3 blockade could be a novel approach to treat cocaine addiction.


Subject(s)
Cocaine/pharmacology , Conditioning, Operant/drug effects , Dopamine Uptake Inhibitors/pharmacology , Gene Expression Regulation/drug effects , Toll-Like Receptor 3/metabolism , Animals , Conditioning, Operant/physiology , Dose-Response Relationship, Drug , Gene Expression Regulation/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , I-kappa B Kinase/metabolism , Locomotion/drug effects , Locomotion/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , NF-KappaB Inhibitor alpha , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Reward , Self Administration , Toll-Like Receptor 3/genetics , Transcription Factor RelA , Transduction, Genetic
13.
J Neurosci ; 35(37): 12890-902, 2015 Sep 16.
Article in English | MEDLINE | ID: mdl-26377474

ABSTRACT

Recent evidence suggests that histone modifications play a role in the behavioral effects of cocaine in rodent models. Histone arginine is known to be methylated by protein arginine N-methyltransferases (PRMTs). Evidence shows that PRMT1 contributes to >90% of cellular PRMT activity, which regulates histone H4 arginine 3 asymmetric dimethylation (H4R3me2a). Though histone arginine methylation represents a chemical modification that is relatively stable compared with other histone alterations, it is less well studied in the setting of addiction. Here, we demonstrate that repeated noncontingent cocaine injections increase PRMT1 activity in the nucleus accumbens (NAc) of C57BL/6 mice. We, subsequently, identify a selective inhibitor of PRMT1, SKLB-639, and show that systemic injections of the drug decrease cocaine-induced conditioned place preference to levels observed with genetic knockdown of PRMT1. NAc-specific downregulation of PRMT1 leads to hypomethylation of H4R3me2a, and hypoacetylation of histone H3 lysine 9 and 14. We also found that H4R3me2a is upregulated in NAc after repeated cocaine administration, and that H4R3me2a upregulation in turn controls the expression of Cdk5 and CaMKII. Additionally, the suppression of PRMT1 in NAc with lentiviral-short hairpin PMRT1 decreases levels of CaMKII and Cdk5 in the cocaine-treated group, demonstrating that PRMT1 affects the ability of cocaine to induce CaMKII and Cdk5 in NAc. Notably, increased H4R3me2a by repeated cocaine injections is relatively long-lived, as increased expression was observed for up to 7 d after the last cocaine injection. These results show the role of PRMT1 in the behavioral effects of cocaine. SIGNIFICANCE STATEMENT: This work demonstrated that repeated cocaine injections led to an increase of protein arginine N-methyltransferase (PRMT1) in nucleus accumbens (NAc). We then identified a selective inhibitor of PRMT1 (SKLB-639), which inhibited cocaine-induced conditioned place preference (CPP). Additionally, genetic downregulation of PRMT1 in NAc also attenuated cocaine-caused CPP and locomotion activity, which was associated with decreased expression of histone H4 arginine 3 asymmetric demethylation (H4R3me2a) and hypoacetylation of histone H3 lysine 9 and 14 (acH3K9/K14). This study also showed that H4R3me2a controlled transcriptions of Cdk5 and CaMKII, and that PRMT1 negatively affected the ability of cocaine to induce CaMKII and Cdk5 in NAc. Notably, increased H4R3me2a by repeated cocaine injection was relatively long-lived as increased expression was observed up to 7 d after withdrawal from cocaine. Together, this study suggests that PRMT1 inhibition may serve as a potential therapeutic strategy for cocaine addiction.


Subject(s)
Amidines/pharmacology , Cocaine/pharmacology , Histones/metabolism , Nerve Tissue Proteins/metabolism , Nucleus Accumbens/enzymology , Protein Processing, Post-Translational , Protein-Arginine N-Methyltransferases/physiology , Pyrimidines/pharmacology , Animals , Chromatin Assembly and Disassembly/drug effects , Drug Evaluation, Preclinical , Methylation , Mice , Models, Molecular , Nerve Tissue Proteins/antagonists & inhibitors , Nucleus Accumbens/drug effects , Nucleus Accumbens/physiology , Protein Conformation , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , RNA Interference , RNA, Small Interfering/pharmacology
14.
BMC Neurosci ; 15: 32, 2014 Feb 22.
Article in English | MEDLINE | ID: mdl-24558969

ABSTRACT

BACKGROUND: Nicotine is rapidly absorbed from cigarette smoke and therefore induces a number of chronic illnesses with the widespread use of tobacco products. Studies have shown a few cerebral metabolites modified by nicotine; however, endogenous metabolic profiling in brain has not been well explored. RESULTS: H NMR-based on metabonomics was applied to investigate the endogenous metabolic profiling of brain hippocampus, nucleus acumens (NAc), prefrontal cortex (PFC) and striatum. We found that nicotine significantly increased CPP in mice, and some specific cerebral metabolites differentially changed in nicotine-treated mice. These modified metabolites included glutamate, acetylcholine, tryptamine, glucose, lactate, creatine, 3-hydroxybutyrate and nicotinamide-adenine dinucleotide (NAD), which was closely associated with neurotransmitter and energy source. Additionally, glutathione and taurine in hippocampus and striatum, phosphocholine in PFC and glycerol in NAc were significantly modified by nicotine, implying the dysregulation of anti-oxidative stress response and membrane metabolism. CONCLUSIONS: Nicotine induces significant metabonomic alterations in brain, which are involved in neurotransmitter disturbance, energy metabolism dysregulation, anti-oxidation and membrane function disruptions, as well as amino acid metabolism imbalance. These findings provide a new insight into rewarding effects of nicotine and the underlying mechanism.


Subject(s)
Brain/metabolism , Magnetic Resonance Spectroscopy/methods , Metabolome/physiology , Neurotransmitter Agents/metabolism , Nicotine/pharmacology , Animals , Brain/drug effects , Male , Metabolome/drug effects , Mice , Mice, Inbred C57BL , Nicotinic Agonists/pharmacology , Protons
15.
PLoS One ; 9(1): e87040, 2014.
Article in English | MEDLINE | ID: mdl-24489831

ABSTRACT

Nicotine, one of the most commonly used drugs, has become a major concern because tobacco serves as a gateway drug and is linked to illicit drug abuse, such as cocaine and marijuana. However, previous studies mainly focused on certain genes or neurotransmitters which have already been known to participate in drug addiction, lacking endogenous metabolic profiling in a global view. To further explore the mechanism by which nicotine modifies the response to cocaine, we developed two conditioned place preference (CPP) models in mice. In threshold dose model, mice were pretreated with nicotine, followed by cocaine treatment at the dose of 2 mg/kg, a threshold dose of cocaine to induce CPP in mice. In high-dose model, mice were only treated with 20 mg/kg cocaine, which induced a significant CPP. (1)H nuclear magnetic resonance based on metabonomics was used to investigate metabolic profiles of the nucleus accumbens (NAc) and striatum. We found that nicotine pretreatment dramatically increased CPP induced by 2 mg/kg cocaine, which was similar to 20 mg/kg cocaine-induced CPP. Interestingly, metabolic profiles showed considerable overlap between these two models. These overlapped metabolites mainly included neurotransmitters as well as the molecules participating in energy homeostasis and cellular metabolism. Our results show that the reinforcing effect of nicotine on behavioral response to cocaine may attribute to the modification of some specific metabolites in NAc and striatum, thus creating a favorable metabolic environment for enhancing conditioned rewarding effect of cocaine. Our findings provide an insight into the effect of cigarette smoking on cocaine dependence and the underlying mechanism.


Subject(s)
Behavior, Animal/drug effects , Cocaine/pharmacology , Energy Metabolism/drug effects , Metabolomics , Neurotransmitter Agents/metabolism , Nicotine/pharmacology , Amino Acids/metabolism , Animals , Choice Behavior/drug effects , Conditioning, Psychological/drug effects , Least-Squares Analysis , Male , Membranes/drug effects , Membranes/metabolism , Metabolic Networks and Pathways/drug effects , Metabolome/drug effects , Mice, Inbred C57BL , Neostriatum/drug effects , Neostriatum/metabolism , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Proton Magnetic Resonance Spectroscopy
16.
Toxicol Lett ; 215(1): 1-7, 2012 Nov 23.
Article in English | MEDLINE | ID: mdl-23041169

ABSTRACT

Methamphetamine (METH), a commonly abused psychostimulant, has been shown to induce neuronal damage by causing reactive oxygen species (ROS) formation, apoptosis and autophagy. Taurine (2-aminoethanesulfonic acid) is involved in several physiological actions in the brain, including neuroprotection, osmoregulation and neurotransmission. In this study, we investigate the protective effect of taurine against METH-induced neurotoxicity in PC12 cells and the underlying mechanism. The results showed that taurine significantly increased the cell viability inhibited by METH. LC3-II expression was elevated by METH treatment, whereas such increase was obviously attenuated by taurine. Co-treatment of taurine strongly reversed the decline of antioxidase activities induced by METH. Moreover, phosphorylated mammalian target of rapamycin (p-mTOR) was significantly inhibited by METH, whereas complementation of taurine markedly increased the expression of p-mTOR in PC12 cells, rather than phosphorylated Erk. Interestingly, taurine-induced decreasing expression of LC3-II was partially blocked by pretreatment of RAD001, an mTOR inhibitor. These results indicated that taurine inhibits METH-induced autophagic process through activating mTOR rather than Erk signaling. Collectively, our study shows that taurine protects METH-induced PC12 cells damage by attenuating ROS production, apoptosis and autophagy, at least in part, via mTOR signaling pathway.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Central Nervous System Stimulants/antagonists & inhibitors , Central Nervous System Stimulants/toxicity , Methamphetamine/antagonists & inhibitors , Methamphetamine/toxicity , Neuroprotective Agents , TOR Serine-Threonine Kinases/physiology , Taurine/pharmacology , Animals , Blotting, Western , Catalase/metabolism , Cell Survival/drug effects , Enzyme Induction/drug effects , Flow Cytometry , Glutathione Peroxidase/metabolism , MAP Kinase Signaling System/drug effects , Oxidative Stress/drug effects , PC12 Cells , Rats , Signal Transduction/genetics , Signal Transduction/physiology , TOR Serine-Threonine Kinases/genetics
17.
J Neurochem ; 123(5): 790-9, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22957495

ABSTRACT

Cocaine dependence involves in the brain's reward circuit as well as nucleus accumbens (NAc), a key region of the mesolimbic dopamine pathway. Many studies have documented altered expression of genes and identified transcription factor networks and epigenetic processes that are fundamental to cocaine addiction. However, all these investigations have focused on mRNA of encoding genes, which may not always reflect the involvement of long non-coding RNAs (lncRNAs), which has been implied in a broad range of biological processes and complex diseases including brain development and neuropathological process. To explore the potential involvement of lncRNAs in drug addiction, which is viewed as a form of aberrant neuroplasticity, we used a custom-designed microarray to examine the expression profiles of mRNAs and lncRNAs in brain NAc of cocaine-conditioned mice and identified 764 mRNAs, and 603 lncRNAs were differentially expressed. Candidate lncRNAs were identified for further genomic context characterization as sense-overlap, antisense-overlap, intergenic, bidirection, and ultra-conserved region encoding lncRNAs. We found that 410 candidate lncRNAs which have been reported to act in cis or trans to their targeted loci, providing 48 pair mRNA-lncRNAs. These results suggest that the modification of mRNAs expression by cocaine may be associated with the actions of lncRNAs. Taken together, our results show that cocaine can cause the genome-wide alterations of lncRNAs expressed in NAc, and some of these modified RNA transcripts may to play a role in cocaine-induced neural plasticity and addiction.


Subject(s)
Cocaine-Related Disorders/genetics , Nucleus Accumbens , RNA, Untranslated/analysis , Transcriptome , Animals , Conditioning, Operant , Male , Mice , Mice, Inbred C57BL , RNA, Untranslated/genetics , Real-Time Polymerase Chain Reaction
18.
J Neurosci Res ; 90(11): 2154-62, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22847893

ABSTRACT

Comprehensive cerebral metabolites involved in morphine dependence have not been well explored. To gain a better understanding of morphine dependence and withdrawal therapy in a model highly related to humans, metabolic changes in brain hippocampus and prefrontal cortex (PFC) of rhesus monkeys were measured by (1) H-nuclear magnetic resonance spectroscopy, coupled with partial least squares and orthogonal signal correction analysis. The results showed that concentrations of myoinositol (M-Ins) and taurine were significantly reduced, whereas lactic acid was increased in hippocampus and PFC of morphine-dependent monkeys. Phosphocholine and creatine increased in PFC but decreased in hippocampus after chronic treatment of morphine. Moreover, N-acetyl aspartate (NAA), γ-aminobutyric acid, glutamate, glutathione, methionine, and homocysteic acid also changed in these brain regions. These results suggest that chronic morphine exposure causes profound disturbances of neurotransmitters, membrane, and energy metabolism in the brain. Notably, morphine-induced dysregulations in NAA, creatine, lactic acid, taurine, M-Ins, and phosphocholine were clearly reversed after intervention with methadone or clonidine. Our study highlights the potential of metabolic profiling to enhance our understanding of metabolite alteration and neurobiological actions associated with morphine addiction and withdrawal therapy in primates.


Subject(s)
Brain/drug effects , Brain/metabolism , Morphine Dependence/metabolism , Animals , Disease Models, Animal , Female , Macaca mulatta , Magnetic Resonance Spectroscopy , Male , Metabolomics , Methadone/pharmacology , Morphine/adverse effects , Narcotics/adverse effects , Substance Withdrawal Syndrome/metabolism
19.
Behav Brain Res ; 231(1): 11-9, 2012 May 16.
Article in English | MEDLINE | ID: mdl-22391120

ABSTRACT

Metabolic consequences of morphine dependence and withdrawal intervention have not been well explored. In the present study, the metabolic changes in brain hippocampus, nucleus accumbens (NAc), prefrontal cortex (PFC) and striatum of rats with morphine dependence and withdrawal intervention were explored by using ¹H nuclear magnetic resonance coupled with principal component analysis, partial least squares and orthogonal signal correction analysis. We found that the concentrations of neurotransmitters including glutamate, glutamine and gamma-aminobutyric acid changed differentially in hippocampus, NAc, PFC and striatum after repeated morphine treatment. Significant changes were also found in a number of cerebral metabolites including N-acetyl aspartate (NAA), lactic acid, creatine, myo-inositol and taurine. These findings indicate the profound disturbances of energy metabolism, amino acid metabolism and neurotransmitters caused by chronic morphine treatment. Interestingly, morphine-induced changes in lactic acid, creatine and NAA were clearly reversed by intervention of methadone or clonidine. Our study provides a comprehensive understanding of the metabolic alteration associated with morphine addiction and withdrawal therapy, which may help to develop new pharmacotherapies.


Subject(s)
Brain/metabolism , Morphine Dependence/metabolism , Morphine/pharmacology , Narcotics/pharmacology , Substance Withdrawal Syndrome/metabolism , Animals , Brain/drug effects , Energy Metabolism/drug effects , Energy Metabolism/physiology , Glutamic Acid/metabolism , Glutamine/metabolism , Magnetic Resonance Spectroscopy , Male , Metabolomics , Rats , Rats, Sprague-Dawley , gamma-Aminobutyric Acid/metabolism
20.
Toxicol Appl Pharmacol ; 260(3): 260-70, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22426360

ABSTRACT

Investigations have characterized addictive drug-induced developmental cardiovascular malformation in human, non-human primate and rodent. However, the underlying mechanism of malformation caused by drugs during pregnancy is still largely unknown, and preventive and therapeutic measures have been lacking. Using 1H NMR spectroscopy, we profiled the metabolites from human embryo endothelial cells exposed to methamphetamine (METH) and quantified a total of 226 peaks. We identified 11 metabolites modified robustly and found that taurine markedly increased. We then validated the hypothesis that this dramatic increase in taurine could attribute to its effect in inhibiting METH-induced developmental angiogenesis defect. Taurine supplement showed a more significant potential than other metabolites in protecting against METH-induced injury in endothelial cells. Taurine strongly attenuated METH-induced inhibition of proliferation and migration in endothelial cells. Furthermore, death rate and vessel abnormality of zebrafish embryos treated with METH were greatly reversed by taurine. In addition, taurine supplement caused a rapid decrease in reactive oxygen species generation and strongly attenuated the excitable arise of antioxidase activities in the beginning of METH exposure prophase. Dysregulations of NF-κB, p-ERK as well as Bax, which reflect apoptosis, cell cycle arrest and oxidative stress in vascular endothelium, were blocked by taurine. Our results provide the first evidence that taurine prevents METH-caused developmental angiogenesis defect through antioxidant mechanism. Taurine could serve as a potential therapeutic or preventive intervention of developmental vascular malformation for the pregnant women with drug use.


Subject(s)
Antioxidants/pharmacology , Endothelial Cells/drug effects , Methamphetamine/toxicity , Neovascularization, Physiologic/drug effects , Taurine/pharmacology , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Endothelial Cells/metabolism , Humans , Magnetic Resonance Spectroscopy/methods , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...