Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(3)2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38339152

ABSTRACT

Calcium (Ca2+) is a versatile intracellular second messenger that regulates several signaling pathways involved in growth, development, stress tolerance, and immune response in plants. Autoinhibited Ca2+-ATPases (ACAs) play an important role in the regulation of cellular Ca2+ homeostasis. Here, we systematically analyzed the putative OsACA family members in rice, and according to the phylogenetic tree of OsACAs, OsACA9 was clustered into a separated branch in which its homologous gene in Arabidopsis thaliana was reported to be involved in defense response. When the OsACA9 gene was knocked out by CRISPR/Cas9, significant accumulation of reactive oxygen species (ROS) was detected in the mutant lines. Meanwhile, the OsACA9 knock out lines showed enhanced disease resistance to both rice bacterial blight (BB) and bacterial leaf streak (BLS). In addition, compared to the wild-type (WT), the mutant lines displayed an early leaf senescence phenotype, and the agronomy traits of their plant height, panicle length, and grain yield were significantly decreased. Transcriptome analysis by RNA-Seq showed that the differentially expressed genes (DEGs) between WT and the Osaca9 mutant were mainly enriched in basal immune pathways and antibacterial metabolite synthesis pathways. Among them, multiple genes related to rice disease resistance, receptor-like cytoplasmic kinases (RLCKs) and cell wall-associated kinases (WAKs) genes were upregulated. Our results suggest that the Ca2+-ATPase OsACA9 may trigger oxidative burst in response to various pathogens and synergically regulate disease resistance and leaf senescence in rice.


Subject(s)
Disease Resistance , Oryza , Disease Resistance/genetics , Adenosine Triphosphatases/metabolism , Oryza/metabolism , Plant Senescence , Phylogeny , Gene Expression Regulation, Plant , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/metabolism
2.
Front Hum Neurosci ; 16: 849481, 2022.
Article in English | MEDLINE | ID: mdl-35601899

ABSTRACT

Objective: This study aims to explore the effect of integrating routine treatment with Tai Chi Chuan (TCC) intervention on the clinical symptom of patients with Chronic Obstructive Pulmonary Disease (COPD) from clinical and neurological perspectives. Methods: Twenty patients with COPD were recruited for regular treatment combined with 8-week TCC rehabilitative practice. Clinical symptoms were evaluated by Chronic Obstructive Pulmonary Symptom Assessment Scale (CAT) and Modified Dyspnea Scale (mMRC) at baseline and after treatment. Resting-state MRI scan was also performed with multiline T2-weighted echo-planar imaging (EPI) to acquire their functional images before and after the treatment. TCC rehabilitation involved a total of 8 weeks of practice with 90 min per session, three times a week. Results: After an 8-week integration routine treatment with TCC practice, the patient's clinical symptoms improved significantly. Imaging analysis showed that COPD patients exhibited decreased Degree of Centrality (DC) in the right inferior frontal gyrus (IFG), right middle frontal gyrus, bilateral cingulate cortex, bilateral precuneus, and right precentral gyrus. Moreover, correlation analysis found that the decreased DC in the right IFG was positively correlated with the CAT improvements. Conclusion: The routine treatment involving TCC rehabilitation practice could improve the clinical symptoms of patients with COPD. The right IFG might be a key brain region to contribute to the neural mechanism underlying integrative intervention on the clinical symptoms in COPD. These findings provide neurological evidence for treating COPD rehabilitation practice with mind-body practice based on Chinese culture to some extent, which also advances the understanding of the efficacy of TCC as the adjuvant technology from a neuroscience perspective. Clinical Trial Registration: [http://www.chictr.org.cn/showproj.aspx?proj=45189], identifier [ChiCTR1900028335].

3.
Sensors (Basel) ; 22(9)2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35590907

ABSTRACT

A mobile edge computing (MEC)-enabled blockchain system is proposed in this study for secure data storage and sharing in internet of things (IoT) networks, with the MEC acting as an overlay system to provide dynamic computation offloading services. Considering latency-critical, resource-limited, and dynamic IoT scenarios, an adaptive system resource allocation and computation offloading scheme is designed to optimize the scalability performance for MEC-enabled blockchain systems, wherein the scalability is quantified as MEC computational efficiency and blockchain system throughput. Specifically, we jointly optimize the computation offloading policy and block generation strategy to maximize the scalability of MEC-enabled blockchain systems and meanwhile guarantee data security and system efficiency. In contrast to existing works that ignore frequent user movement and dynamic task requirements in IoT networks, the joint performance optimization scheme is formulated as a Markov decision process (MDP). Furthermore, we design a deep deterministic policy gradient (DDPG)-based algorithm to solve the MDP problem and define the multiple and variable number of consecutive time slots as a decision epoch to conduct model training. Specifically, DDPG can solve an MDP problem with a continuous action space and it only requires a straightforward actor-critic architecture, making it suitable for tackling the dynamics and complexity of the MEC-enabled blockchain system. As demonstrated by simulations, the proposed scheme can achieve performance improvements over the deep Q network (DQN)-based scheme and some other greedy schemes in terms of long-term transactional throughput.


Subject(s)
Blockchain , Internet of Things , Algorithms , Computer Security , Information Storage and Retrieval
4.
Life (Basel) ; 11(6)2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34207133

ABSTRACT

Long-term negative affect in adolescence is associated with impairment in quality of life, interpersonal function, and social adaptation. Although physical exercise could decrease negative emotion, the underlying mechanism remains largely unknown. Acute exercise with controlled intensity might be a good experimental paradigm to unravel the potential neural mechanisms underlying the effects of physical exercise on negative affect. In this study, twenty-three males in late adolescence were randomly assigned to acute exercise group (AG) or control group. The experiment contained pre-test and post-test session interleaved with 30-min moderate-intensity exercise or seated rest. In each session, a resting-state fMRI scanning was conducted followed by completing Positive and Negative Affect Schedule and Profile of Mood State. Bilateral amygdala was used as seed region to calculate t voxel-wised functional connectivity (FC) of amygdala to whole brain. The results demonstrated, for the first time, that AG exhibited increased FC between right amygdala and right orbital frontal cortex. Significantly decreased negative affect was also observed in AG. Moreover, the increased rOFC-amygdala FC was also associated with the decreased depression score. Our findings suggest that exercise-induced decreased negative affect might be modulated by functional interactions of amygdala with both cognitive control and limbic networks, which offers a meaningful insight for clinical treatment and prevention of emotional disorders in late adolescence.

SELECTION OF CITATIONS
SEARCH DETAIL
...