Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Exp Clin Cancer Res ; 43(1): 149, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38778379

ABSTRACT

BACKGROUND: Prostate cancer (PCa) incidence and mortality rates are rising. Our previous research has shown that the combination of icariin (ICA) and curcumol (CUR) induced autophagy and ferroptosis in PCa cells, and altered lipid metabolism. We aimed to further explore the effects of the combination of ICA and CUR on gut microbiota, metabolism, and immunity in PCa. METHODS: A mouse subcutaneous RM-1 cell tumor model was established. 16 S rRNA sequencing was performed to detect changes in fecal gut microbiota. SCFAs in mouse feces, and the effect of ICA-CUR on T-cell immunity, IGFBP2, and DNMT1 were examined. Fecal microbiota transplantation (FMT) was conducted to explore the mechanism of ICA-CUR. Si-IGFBP2 and si/oe-DNMT1 were transfected into RM-1 and DU145 cells, and the cells were treated with ICA-CUR to investigate the mechanism of ICA-CUR on PCa development. RESULTS: After treatment with ICA-CUR, there was a decrease in tumor volume and weight, accompanied by changes in gut microbiota. ICA-CUR affected SCFAs and DNMT1/IGFBP2/EGFR/STAT3/PD-L1 pathway. ICA-CUR increased the positive rates of CD3+CD8+IFN-γ, CD3+CD8+Ki67 cells, and the levels of IFN-γ and IFN-α in the serum. After FMT (with donors from the ICA-CUR group), tumor volume and weight were decreased. SCFAs promote tumor development and the expression of IGFBP2. In vitro, DNMT1/IGFBP2 promotes cell migration and proliferation. ICA-CUR inhibits the expression of DNMT1/IGFBP2. CONCLUSIONS: ICA-CUR mediates the interaction between gut microbiota and the DNMT1/IGFBP2 axis to inhibit the progression of PCa by regulating immune response and metabolism, suggesting a potential therapeutic strategy for PCa.


Subject(s)
CD8-Positive T-Lymphocytes , DNA (Cytosine-5-)-Methyltransferase 1 , Gastrointestinal Microbiome , Prostatic Neoplasms , Animals , Mice , Male , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , Humans , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Prostatic Neoplasms/drug therapy , Insulin-Like Growth Factor Binding Protein 2/metabolism , Flavonoids/pharmacology , Flavonoids/therapeutic use , Disease Models, Animal
2.
Commun Biol ; 7(1): 465, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632312

ABSTRACT

High temperature and humidity in the environment are known to be associated with discomfort and disease, yet the underlying mechanisms remain unclear. We observed a decrease in plasma glucagon-like peptide-1 levels in response to high-temperature and humidity conditions. Through 16S rRNA gene sequencing, alterations in the gut microbiota composition were identified following exposure to high temperature and humidity conditions. Notably, changes in the gut microbiota have been implicated in bile acid synthesis. Further analysis revealed a decrease in lithocholic acid levels in high-temperature and humidity conditions. Subsequent in vitro experiments demonstrated that lithocholic acid increases glucagon-like peptide-1 secretion in NCI-H716 cells. Proteomic analysis indicated upregulation of farnesoid X receptor expression in the ileum. In vitro experiments revealed that the combination of lithocholic acid with farnesoid X receptor inhibitors resulted in a significant increase in GLP-1 levels compared to lithocholic acid alone. In this study, we elucidate the mechanism by which reduced lithocholic acid suppresses glucagon-like peptide 1 via farnesoid X receptor activation under high-temperature and humidity condition.


Subject(s)
Gastrointestinal Microbiome , Glucagon-Like Peptide 1 , Animals , Mice , Glucagon-Like Peptide 1/genetics , Glucagon-Like Peptide 1/metabolism , Humidity , Proteomics , RNA, Ribosomal, 16S , Temperature , Transcription Factors , Bile Acids and Salts , Lithocholic Acid
3.
J Ethnopharmacol ; 326: 117972, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38403005

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Guhan Yangsheng Jing (GHYSJ) is a traditional Chinese patent medicine, that has the function of nourishing the kidney and replenishing the essence, invigorating the brain and calming the mind. It is often used to treat dizziness, memory loss, sleep disorders, fatigue, and weakness, etc. However, its mechanism for improving sleep has not yet been determined. AIM OF THE STUDY: This study aims to explore the effects of GHYSJ on Sleep Deprivation (SD)-induced hippocampal neuronal pyroptotic injury, learning and cognitive abilities, and sleep quality in mice. METHODS: In this study, a PCPA-induced SD mouse model was established. We assessed the influence of GHYSJ on sleep quality and mood by using the pentobarbital-induced sleep test (PIST) and sucrose preference test (SPT). The pharmacological effects of GHYSJ on learning and memory impairment were evaluated by the Morris Water Maze (MWM) and Open Field Test (OFT). Pathological changes in the hippocampal tissue of the SD rats were observed via HE staining and Nissl staining. The severity of neuronal damage was evaluated by detecting the expression of the neuronal marker Microtubule-associated protein 2 (MAP2), via immunohistochemistry and immunofluorescence. Furthermore, the levels of neurotransmitter 5-hydroxytryptophan (5-HTP), 5-hydroxy tryptamine (5-HT), γ-aminobutyric acid (GABA), and Glutamic acid (Glu) in hippocampal tissues, as well as the expression of inflammatory factors Interleukin-1ß (IL-1ß) and Interleukin-18 (IL-18) in serum, were determined by ELISA. The expressions of mRNA and protein NOD-like receptor thermal protein domain associated protein 3 (NLRP3), Gasdermin D (GSDMD), Cysteinyl aspartate specific proteinase1 (Caspase1), High mobility group box-1 protein (HMGB1) and Apoptosis-associated speck-like protein containing CARD (ASC) related to the cellular ferroptosis pathway were tested and analyzed by RT-PCR and WB respectively. RESULTS: PCPA significantly diminishes the sleep span of experimental animals by expediting the expenditure of 5-HT, consequently establishing an essentially direct SD model. The intervention of GHYSJ displays remarkable efficacy in mitigating insomnia symptoms, encompassing difficulties in initiating sleep and insufficient sleep duration. Likewise, it ameliorates memory function impairments induced by sleep deprivation, along with symptoms such as fatigue and depletion of vitality. GHYSJ exerts a protective influence on hippocampal neurons facilitated by inhibiting the down regulation of MAP2 and maintaining the equilibrium of neurotransmitters (5-HTP, 5-HT, GABA, and Glu). It diminishes the expression of intracellular pyroptosis-associated inflammatory factors (IL-1ß and IL-18) and curbs the activation of the NLRP3/Caspase1/GSDMD pyroptosis-related signaling pathways, thereby alleviating the damage caused by hippocampal neuronal pyroptosis.


Subject(s)
Aspartic Acid , Interleukin-18 , Mice , Animals , Rats , Sleep Deprivation , NLR Family, Pyrin Domain-Containing 3 Protein , 5-Hydroxytryptophan , Serotonin , Sleep , Signal Transduction , Neurons , Memory Disorders/drug therapy , gamma-Aminobutyric Acid , Caspase 1
4.
EBioMedicine ; 99: 104918, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38103514

ABSTRACT

BACKGROUND: Food is crucial for maintaining vital human and animal activities. Disorders in appetite control can lead to various metabolic disturbances. Alterations in the gut microbial composition can affect appetite and energy metabolism. While alterations in the gut microbiota have been observed in high-temperature and high-humidity (HTH) environments, the relationship between the gut microbiota during HTH and appetite remains unclear. METHODS: We utilised an artificial climate box to mimic HTH environments, and established a faecal bacteria transplantation (FMT) mouse model. Mendelian randomisation (MR) analysis was used to further confirm the causal relationship between gut microbiota and appetite or appetite-related hormones. FINDINGS: We found that, in the eighth week of exposure to HTH environments, mice showed a decrease in food intake and body weight, and there were significant changes in the intestinal microbiota compared to the control group. After FMT, we observed similar changes in food intake, body weight, and gut bacteria. Appetite-related hormones, including ghrelin, glucagon-like peptide-1, and insulin, were reduced in DH (mice exposed to HTH conditions) and DHF (FMT from mice exposed to HTH environments for 8 weeks), while the level of peptide YY initially increased and then decreased in DH and increased after FMT. Moreover, MR analysis further confirmed that these changes in the intestinal microbiota could affect appetite or appetite-related hormones. INTERPRETATION: Together, our data suggest that the gut microbiota is closely associated with appetite suppression in HTH. These findings provide novel insights into the effects of HTH on appetite. FUNDING: This work was supported by the National Natural Science Foundation of China and Guangzhou University of Chinese Medicine.


Subject(s)
Gastrointestinal Microbiome , Humans , Animals , Mice , Appetite , Humidity , Temperature , Body Weight
5.
Diabetes Res Clin Pract ; 206: 111012, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37967586

ABSTRACT

BACKGROUND: Diabetes mellitus erectile dysfunction (DMED) is one of common complications of diabetes. We aimed to investigate the potential efficacy of methyl protodioscin (MPD) in DMED and explored the underlying mechanism. METHODS: Diabetic mice were induced by streptozotocin, while vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs) were stimulated with high glucose. MPD was administrated in vitro and in vivo to verify its efficacy on DMED. The interaction of c-Myc and AKAP12 was determined by luciferase reporter assay and chromatin immunoprecipitation assay. RESULTS: c-Myc and AKAP12 were upregulated in penile tissues in DMED mice. In high glucose-stimulated VSMCs or VECs, MPD intervention enhanced cell viability, inhibited apoptosis, decreased c-Myc and AKAP12, as well as elevated p-eNOS Ser1177. MPD-induced apoptosis inhibition, AKAP12 reduction and p-eNOSSer1177 elevation were reversed by AKAP12 overexpression. c-Myc functioned as a positive regulator of AKAP12. Overexpression of c-Myc reversed the effects induced by MPD in vitro, which was neutralized by AKAP12 silencing. MPD ameliorated erectile function in diabetic mice via inhibiting AKAP12. CONCLUSIONS: MPD improved erectile dysfunction in streptozotocin-caused diabetic mice by regulating c-Myc/AKAP12 pathway, indicating that MPD could be developed as a promising natural agent for the treatment of DMED.


Subject(s)
Diabetes Mellitus, Experimental , Erectile Dysfunction , Male , Rats , Humans , Mice , Animals , Erectile Dysfunction/etiology , Erectile Dysfunction/genetics , Diabetes Mellitus, Experimental/metabolism , Down-Regulation , Endothelial Cells/metabolism , Streptozocin , Rats, Sprague-Dawley , Glucose , Cell Cycle Proteins/metabolism , A Kinase Anchor Proteins/genetics , A Kinase Anchor Proteins/metabolism
6.
Int J Biol Macromol ; 228: 582-593, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36563826

ABSTRACT

Osteoarthritis (OA) is a chronic joint disease characterized by progressive cartilage degeneration, which imposes a heavy physical and financial burden on the middle-aged and elderly population. As the pathogenesis of OA has not been fully elucidated, it is of great importance to develop targeted therapeutic or preventive medications. Traditional therapeutic drugs, such as non-steroidal anti-inflammatory drugs, steroids and opioids, have significant side effects, making the exploration for safe and effective alternative therapeutic drugs urgent. In recent years, many studies have reported the role of plant-derived polysaccharides in anti-inflammation, anti-oxidation, regulation of chondrocyte metabolism and proliferation, and cartilage protection, and have demonstrated their great potential in the treatment of OA. Therefore, by focusing on studies related to the intervention of plant-derived polysaccharides in OA, including in vivo and in vitro experiments, this review aimed to classify and summarize the existing research findings according to different mechanisms of action. In addition, reports on plant-derived polysaccharides as nanoparticles were also explored. Then, candidate monomers and theoretical bases were provided for the further development and application of novel drugs in the treatment of OA.


Subject(s)
Cartilage, Articular , Osteoarthritis , Aged , Humans , Middle Aged , Osteoarthritis/pathology , Cartilage, Articular/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Chondrocytes , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Polysaccharides/metabolism
7.
Mol Cell Biochem ; 478(8): 1791-1802, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36571651

ABSTRACT

Erectile dysfunction (ED) is a major health problem affecting a large proportion of the general population. Testosterone also plays a key role in sexual dysfunction. In this study, we found that testosterone can inhibit cavernous fibrosis by affecting the expression of miR-22-3p, providing a new basis for research and treatment of ED. Old and young rats were used to study the effects of testosterone on cavernous fibrosis. Hematoxylin and eosin (HE) and Masson's staining were used to observe the cavernous tissue. A luciferase assay was used to analyze the relationship between the miR-22-3p, TGFßR1, and Galectin-1 signaling pathways. CCK-8 and flow cytometry were used to detect the proliferation and apoptosis rates of cavernosum smooth muscle cells (CSMCs) following testosterone intervention. Immunohistochemical analysis was performed to examine the positive rate of caspase 3 and Ki67. IF was used to analyze the expression of collagen IV, MMP2, and α-SMA. The levels of GnRH, tT, LH, and F-TESTO in old rats increased after testosterone intervention. miR-22-3p inhibits the expression of TGFßR1 and Galectin-1. The protein expression of TGFßR1, Galectin-1, SMAD2, and p-SMAD2 was reduced by testosterone. The expression levels of α-SMA, collagen I, collagen IV, FN, and MMP2 in the cavernous tissues of old rats treated with testosterone were significantly reduced. The levels of caspase 3 and collagen IV decreased, and the levels of MMP2, Ki67, and α-SMA increased. Testosterone and miR-22-3p inhibit CSMC apoptosis and promote cell proliferation. Testosterone promoted the expression of miR-22-3p to interfere with the expression of the cavernous TGFßR1 and Galectin-1 signaling pathways. Testosterone can reduce cavernous fibrosis during the treatment of functional ED.


Subject(s)
MicroRNAs , Male , Rats , Humans , Animals , MicroRNAs/metabolism , Rats, Sprague-Dawley , Matrix Metalloproteinase 2/metabolism , Caspase 3/metabolism , Galectin 1/genetics , Galectin 1/metabolism , Galectin 1/pharmacology , Ki-67 Antigen/metabolism , Testosterone/pharmacology , Fibrosis , Signal Transduction , Collagen Type I/metabolism , Apoptosis
8.
J Environ Public Health ; 2022: 4649614, 2022.
Article in English | MEDLINE | ID: mdl-36570783

ABSTRACT

Most medicines are coming with toxic and detrimental side effects. In addition, microbials are resisting the medicine. Therefore, alternative drugs with low toxic and side effects and low microbial resistance are needed. Plants offer good potential candidates due to a broad range of chemicals they contain. These chemicals have been studied, and research is still going on to probe chemical properties of plant chemicals. In China, traditional Chinese medicine is practised, whereby plant extracts are obtained, and then sold in packages for reasons like memory enhancement, cancer treatment, boosting immune system, and so on. Among the herbs cultivated in China is Polygonati rhizoma (PGR). This plant contains various bioflavonoids such as diosgenin, kaempferol, catechin, daidzein, and 3'-methoxydaidzein. In this review, we discussed the pharmacological effects of these chemicals, including luteolin antimicrobial activity in a manner that it circumvents antibiotic resistance; rutin antivenom property; kaempferol as an agent that mitigates neuropathic pain; genistein anticancer property; isorhamnetin's ability to alleviate chronic obstructive pulmonary diseases (COPD); proanthocyanidins' ability to deal with diabetic neuropathy and analgesic property of catechin.


Subject(s)
Catechin , Flavonoids , Flavonoids/pharmacology , Kaempferols/pharmacology , Medicine, Chinese Traditional , China
9.
Pharm Biol ; 60(1): 889-898, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35587223

ABSTRACT

CONTEXT: The risk of contrast-induced acute kidney injury (CI-AKI) is increasing and the harm is great. Quercetin is the main active component in Abelmoschus manihot (L.) Medik (Malvaceae) and was reported to reduce the expression of HIF-1α. OBJECTIVE: We investigate whether quercetin improves the CI-AKI through the HIF-1α/lncRNA NEAT1/HMGB1 pathway. MATERIALS AND METHODS: HK-2 cells were treated with iohexol (200 mg/mL) for 6 h to establish a CI-AKI model. Quercetin (20 µM) was administered to CI-AKI cells cultured in dishes for 24 h. Cell morphology was observed by a fluorescence microscope. MTT and TUNEL assays were used to detect cell survival rate and apoptosis. Relative mRNA levels were measured by qRT-PCR. Protein levels were detected using western blotting. IL-6 and TNF-α protein levels were tested by Elisa assay. Targeting binding sites of HIF-1α and lncRNA NEAT1 were detected by luciferase assay. RESULTS: The IC50 value of quercetin was 163.25 µM. The expression levels of HIF-1α, lncRNA NEAT1 and HMGB1 were upregulated in the CI-AKI cell model. Quercetin diminished cell injury and apoptosis via inhibiting HIF-1α. Silencing of HIF-1α targeting lncRNA MEAT1 diminished cell injury and apoptosis. Silencing lncRNA NEAT1 has the same effect via suppressing HMGB1 expression. Collectively, quercetin diminished cell injury and apoptosis in CI-AKI cell model via the inhibition of HIF-1α on lncRNA NEAT1/HMGB1 signalling pathway. DISCUSSION AND CONCLUSIONS: Quercetin diminished cell injury and apoptosis in CI-AKI cell mode via the inhibition of HIF-1α on the lncRNA NEAT1/HMGB1 signalling pathway, offering a potential novel therapeutic target for CI-AKI therapy.


Subject(s)
Acute Kidney Injury , HMGB1 Protein , MicroRNAs , RNA, Long Noncoding , Acute Kidney Injury/chemically induced , Acute Kidney Injury/prevention & control , Apoptosis , HMGB1 Protein/genetics , Humans , MicroRNAs/genetics , Quercetin/pharmacology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
10.
Zhongguo Zhong Yao Za Zhi ; 45(7): 1684-1690, 2020 Apr.
Article in Chinese | MEDLINE | ID: mdl-32489050

ABSTRACT

The aim of this paper was to analyze the microarray data between ulcerative colitis(UC) patients and healthy people by bioinformatics technology, screen the differentially expressed genes of UC, and predict the potential Chinese medicines for UC. The GSE36807 gene expression profile was downloaded from the gene expression database(GEO) and the differentially expressed(both up-regulated and down-regulated) genes(DEGs) were analyzed by using R language software. The core genes in the DEGs were obtained by using String database, Cytoscape software and its plug-in analysis, and the gene ontology(GO) and Kyoto encyclopedia of genes and genomes(KEGG) were used to analyze the core genes. Moreover, the core genes and the medical ontology information retrieval platform(Coremine Medical) were mapped to each other to screen the traditional Chinese medicines and its active ingredients for treating UC. A total of 648 DEGs were screened, including 397 up-regulated genes and 251 down-regulated genes. Up-regulation of DEGs yielded 15 core genes including CXCL8, IL1 B, MMP9, CXCL1, CXCL10, CXCL9, CXCL2, CXCL5, TIMP1, CXCL11, STAT1,LCN2, IL1 RN, MMP1 and IDO1. Their biological processes and pathways were mainly enriched in interleukins, chemokine ligands and cytokines, chemokine-mediated signaling pathways, and were closely related to inflammatory responses, defense responses, cell chemotaxis, secretory granules, IL17 signaling pathways, Toll-like receptor signaling pathway, NOD-like receptor signaling pathway, and TNF signaling pathway. Potential Chinese medicines for the treatment of UC include Curcumae Longae Rhizoma, Coptidis Rhizoma, Scutellariae Radix, Dendrobii Caulis, Sanguisorbae Radix, Phellodendri Chinensis Cortex, Bletillae Rhizoma and Atractylodis Rhizoma. The analysis of DEGs and core genes could promote our understanding on pathogenesis of UC. This study provides potential gene targets and research ideas for the development of new drugs of Chinese medicine intervention for UC.


Subject(s)
Colitis, Ulcerative , Computational Biology , Gene Expression Profiling , Gene Ontology , Humans , Software , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...