Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 262: 122051, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39024668

ABSTRACT

Serious arsenic (As) contaminations could commonly result from the oxidative dissolution of As-containing sulfide minerals, such as arsenopyrite (FeAsS). Pyrite (Py) and calcite (Cal) are two typically co-existing reactive minerals and represent different geological scenarios. Previous studies have shown that a high proportion of Py can generate a stronger galvanic effect and acid dissolution, thereby significantly promoting the release of arsenic. However, this conclusion overlooks calcite's antagonistic effect on the release of As in the natural environment. That antagonistic effect could remodel the linear relationship of pyrite on the oxidative dissolution of arsenopyrite, thus altering the environmental risk of As. We examined As release from arsenopyrite along a gradient of Py to Cal molar ratios (Py:Cal). The results showed that the lowest As release from arsenopyrite was surprisingly found in co-existing Py and Cal systems than in the singular Cal system, let alone in the singular Py system. This phenomenon indicated an interesting possibility of Py assistance to Cal inhibition of As release, though Py has always been regarded as a booster, also evidenced in this research, for As release from arsenopyrite. In singular systems of Py and Cal, As continued to be released for 60 days. However, in co-existing Py and Cal systems, As was released non-linearly in three stages over time: initial release (0-1 Day), immobilization (1-15 Days), and subsequent re-release (>15 Days). This is a new short-term natural attenuation stage for As, but over time, this stage gradually collapses. During the re-release stage (> 15 Days), a higher molar ratio of Py:Cal (increasing from 1:9 to 9:1) results in a lower rate constant k (mg·L-1·h-1) of As release (range from 0.0011 to 0.0002), and a higher abundance of secondary minerals formed (up to 26 mg/g goethite and hematite at Py: Cal=9:1). This demonstrates that increasing the Py:Cal molar ratio results in the formation of more secondary minerals which compensate for the higher potential antagonistic mechanisms generated by pyrites, such as acid dissolution and galvanic effect. These results explain the mechanisms of the high-risk characteristics of As both in acidic mine drainage and karst aquifers and discover the lowest risk in pyrite and calcite co-existing regions. Moreover, we emphasize that reactive minerals are important variables that can't be ignored in predicting As pollution in the future.

2.
Ecotoxicol Environ Saf ; 203: 110988, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32678761

ABSTRACT

The screening and identification of hyperaccumulators is the key to the phytoremediation of soils contaminated by heavy metal (HM). Arbuscular mycorrhizal fungus (AMF) can improve plant growth and tolerance to HM; therefore, AMF-assisted phytoextraction has been regarded as a potential technique for the remediation of HM-polluted soils. A greenhouse pot experiment was conducted to determine whether Sphagneticola calendulacea is a Cd-hyperaccumulator and to investigate the effect of the AMF-Funneliformis mosseae (FM) on plant growth and on the accumulation, subcellular distribution and chemical form of Cd in S. calendulacea grown in soils supplemented with different Cd levels. At 25, 50 and 100 mg Cd kg-1 level, S. calendulacea showed high Cd tolerance, the translocation factor and the bioconcentration factor exceeded 1, and accumulation of more than 100 mg Cd kg-1 was observed in the aboveground parts of the plant, meeting the requirements for a Cd-hyperaccumulator. Moreover, FM colonization significantly increased both biomasses and Cd concentration in S. calendulacea. After FM inoculation, the Cd concentrations and proportions increased in the cell walls, but exhibited no significant change in the organelles of the shoots. Meanwhile, FM symbiosis contributed to the conversion of Cd from highly toxic chemical forms (extracted by 80% ethanol and deionized water) to less toxic chemical forms (extracted by 1 M NaCl, 2% acetic acid, 0.6 M HCl) of Cd in the shoots. Overall, S. calendulacea is a typical Cd-hyperaccumulator, and FM symbiosis relieved the phytotoxicity of Cd and promoted plant growth and Cd accumulation, and thus greatly increasing the efficiency of phytoextraction for Cd-polluted soil. Our study provides a theoretical basis and application guidance for the remediation of Cd-contaminated soil by the symbiont of S. calendulacea with FM.


Subject(s)
Asteraceae/metabolism , Bioaccumulation , Cadmium/metabolism , Glomeromycota/physiology , Mycorrhizae/physiology , Soil Pollutants/metabolism , Asteraceae/growth & development , Asteraceae/microbiology , Biodegradation, Environmental
3.
Int J Phytoremediation ; 22(10): 1009-1018, 2020.
Article in English | MEDLINE | ID: mdl-32064907

ABSTRACT

A greenhouse pot experiment was conducted to assess the effects of biochar (BC) and arbuscular mycorrhizal fungus (AMF)-Funneliformis mosseae (Fm), Glomus versiforme (Gv) and Rhizophagus intraradices (Ri) on the plant growth and Cd/Pb accumulation by corn grown in the soils artificially contaminated with 5 mg Cd and 300 mg Pb kg-1 soil. The single AMF inoculation and combined usage of AMF and BC evidently improved the P contents of maize. Furthermore, the combined use of AMF and BC produced pronounced positive effect on corn growth, and the shoot biomass in Gv + BC group was 9.85-fold higher than that of the control. Meanwhile, the single BC addition and combined utilization of AMF and BC significantly reduced Cd and Pb concentrations in maize, and the greater reduces were found in the combined utilization, and the lowest Cd concentration of shoot was appeared in Gv + BC group. The single BC addition and combined application of AMF and BC significantly increased soil pH, and reduced soil diethylenetriaminepentaacetic acid (DTPA)-extractable Cd/Pb. This study demonstrated a synergistic effect between AMF (Gv, Fm, Ri) and BC on improving maize growth and decreasing Cd/Pb accumulation in maize, and the combined use of Gv and BC brought the most pronounced effect, which could provide a feasible strategy for safe production of maize from Cd/Pb-polluted soils.


Subject(s)
Mycorrhizae , Soil Pollutants/analysis , Biodegradation, Environmental , Cadmium/analysis , Charcoal , Lead , Plant Roots/chemistry , Soil , Zea mays
4.
Int J Phytoremediation ; 21(9): 857-865, 2019.
Article in English | MEDLINE | ID: mdl-30919656

ABSTRACT

Little attention has been paid to the combined use of arbuscular mycorrhizal fungus (AMF) and steel slag (SS) for ameliorating heavy metal polluted soils. A greenhouse pot experiment was conducted to study the effects of SS and AMF-Funneliformis mosseae (Fm), Glomus versiforme (Gv) and Rhizophagus intraradices (Ri) on plant growth and Cd, Pb uptake by maize grown in soils added with 5 mg Cd kg-1 and 300 mg Pb kg-1 soil. The combined usage of AMF and SS (AMF + SS) promoted maize growth, and Gv + SS had the most obvious effect. Meanwhile, single SS addition and AMF + SS decreased Cd, Pb concentrations in maize, and the greater reductions were found in combined utilization, and the lowest Cd, Pb concentrations of maize appeared in Gv + SS. Single SS amendment and AMF + SS enhanced soil pH and decreased soil diethylenetriaminepentaacetic acid (DTPA)-extractable Cd, Pb concentrations. Furthermore, alone and combined usage of AMF and SS increased contents of soil total glomalin. Our research indicated a synergistic effect between AMF and SS on enhancing plant growth and reducing Cd, Pb accumulation in maize, and Gv + SS exerted the most pronounced effect. This work suggests that AMF inoculation in combination with SS addition may be a potential method for not only phytostabilization of Pb-Cd-contaminated soil but maize safety production.


Subject(s)
Mycorrhizae , Soil Pollutants/analysis , Biodegradation, Environmental , Cadmium/analysis , Lead , Plant Roots , Steel , Zea mays
5.
Ecotoxicol Environ Saf ; 171: 352-360, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-30616152

ABSTRACT

Arbuscular mycorrhizal fungus (AMF) can relieve Cd phytotoxicity and improve plant growth, but the mechanisms involved in this process have still been not completely known. In the present work, a pot experiment was conducted to examine productions of glutathione (GSH) and phytochelatins (PCs), and absorption, chemical forms and subcellular distribution of Cd in maize (Zea mays) inoculated with or without AMF (Rhizophagus intraradices (Ri) and Glomus versiforme (Gv)) in Cd-amended soils (0, 1 and 5 mg Cd kg-1 soil). In general, both Ri and Gv inoculation dramatically enhanced biomass production and reduced Cd concentrations in shoots and roots of maize when compared to the non-mycorrhizal treatment. Moreover, both Ri and Gv symbiosis obviously increased contents of GSH and PCs, both in shoots and roots. Subcellular distribution of Cd in maize indicated that most of Cd (more than 90%) was accumulated in cell wall and soluble fraction. In addition, Cd proportions in soluble fractions in shoots of maize inoculated with Gv or Ri were considerably increased, but reduced in cell wall fractions compared to non-mycorrhizal maize, indicating that mycorrhizal symbiosis promoted Cd transfer to vacuoles. Furthermore, proportions of Cd in inorganic and water-soluble forms were declined, but elevated in pectates and proteins-integrated forms in mycorrhizal maize, which suggested that Gv and Ri could convert Cd into inactive forms. These observations could provide a further understanding of potential Cd detoxification mechanism in maize inoculated with AMF.


Subject(s)
Cadmium/metabolism , Cadmium/toxicity , Glomeromycota , Mycorrhizae/metabolism , Zea mays/metabolism , Biomass , Cadmium/analysis , Cell Wall/metabolism , Glutathione/metabolism , Phytochelatins/metabolism , Plant Development , Plant Roots/metabolism , Plant Shoots/metabolism , Soil/chemistry , Soil Pollutants/analysis , Soil Pollutants/toxicity , Symbiosis , Vacuoles/metabolism , Zea mays/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...