Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 785
Filter
1.
J Asian Nat Prod Res ; : 1-7, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38975972

ABSTRACT

A chemical investigation on the roots of Aconitum nagarum afforded two undescribed C19-diterpenoid alkaloids nagarumines D and E (1 and 2). The structures of the new compounds were elucidated by spectral methods such as 1D and 2D (1H-1H COSY, HMQC, and HMBC) NMR spectroscopy, as well as HR-ESI-MS. The two isolated alkaloids were tested in vitro for cytotoxic activity against five gastric tumor cell lines. Consequently, compound 2 exhibited some cytotoxicities against several human cancer cell lines with IC50 value less than 20.0 µM.

2.
Water Res ; 261: 122069, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39003878

ABSTRACT

Biological activated carbon (BAC) is one of the important treatment processes in wastewater and advanced water treatment. However, the BAC process has been reported to have antimicrobial resistance (AMR) risks. In this study, a new BAC-related treatment process was developed to reduce AMR caused by BAC treatment: ozone/peroxymonosulfate-BAC (O3/PMS-BAC). The O3/PMS-BAC showed better treatment performance on the targeted five antibiotics and dissolved organic matter removal than O3-BAC and BAC treatments. The O3/PMS-BAC process had better control over the AMR than the O3-BAC and BAC processes. Specifically, the amount of targeted antibiotic-resistant bacteria in the effluent and biofilm of O3/PMS-BAC was only 0.01-0.03 and 0.11-0.26 times that of the BAC process, respectively. Additionally, the O3/PMS-BAC process removed 1.76 %-62.83 % and 38.14 %-99.27 % more of the targeted ARGs in the effluent and biofilm than the BAC process. The total relative abundance of the targeted 12 ARGs in the O3/PMS-BAC effluent was decreased by 86 % compared to the effluent after BAC treatment. In addition, Proteobacteria and Bacteroidetes were probably the main hosts for transmitting ARGs in this study, and their relative abundance decreased by 9.6 % and 6.0 % in the effluent of the O3/PMS-BAC treatment compared to that in BAC treatment. The relationship analysis revealed that controlling antibiotic discharge was crucial for managing AMR, as antibiotics were closely related to both ARGs and bacteria associated with their emergence. The results showed that the newly developed treatment process could reduce AMR caused by BAC treatment while ensuring effluent quality. Therefore, O3/PMS-BAC is a promising alternative to BAC treatment for future applications.

3.
Nano Lett ; 24(28): 8709-8716, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38976365

ABSTRACT

Sealing wet porous membranes is a major challenge when fabricating cell encapsulation devices. Herein, we report the development of an Autoclavable Transparent Thermal Cutter (ATTC) for reliably sealing wet nanofibrous membranes. Notably, the ATTC is autoclavable and transparent, thus enabling in situ visualization of the sealing process in a sterile environment and ensuring an appropriate seal. In addition, the ATTC could generate smooth, arbitrary-shaped sealing ends with excellent mechanical properties when sealing PA6, PVDF, and TPU nanofibrous tubes and PP microporous membranes. Importantly, the ATTC could reliably seal wet nanofibrous tubes, which can shoulder a burst pressure up to 313.2 ± 19.3 kPa without bursting at the sealing ends. Furthermore, the ATTC sealing process is highly compatible with the fabrication of cell encapsulation devices, as verified by viability, proliferation, cell escape, and cell function tests. We believe that the ATTC could be used to reliably seal cell encapsulation devices with minimal side effects.

4.
Antioxidants (Basel) ; 13(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38929080

ABSTRACT

Unsaturated fatty acids (UFAs) in beef play a vital role in promoting human health. Long-chain fatty acyl-CoA synthase 1 (ACSL1) is a crucial gene for UFA synthesis in bovine adipocytes. To investigate the protein expression profile during UFA synthesis, we performed a proteomic analysis of bovine adipocytes by RNA interference and non-interference with ACSL1 using label-free techniques. A total of 3558 proteins were identified in both the NC and si-treated groups, of which 1428 were differentially expressed proteins (DEPs; fold change ≥ 1.2 or ≤ 0.83 and p-value < 0.05). The enrichment analysis of the DEPs revealed signaling pathways related to UFA synthesis or metabolism, including cAMP, oxytocin, fatty acid degradation, glycerol metabolism, insulin, and the regulation of lipolysis in adipocytes (p-value < 0.05). Furthermore, based on the enrichment analysis of the DEPs, we screened 50 DEPs that potentially influence the synthesis of UFAs and constructed an interaction network. Moreover, by integrating our previously published transcriptome data, this study established a regulatory network involving differentially expressed long non-coding RNAs (DELs), highlighting 21 DEPs and 13 DELs as key genes involved in UFA synthesis. These findings present potential candidate genes for further investigation into the molecular mechanisms underlying UFA synthesis in bovines, thereby offering insights to enhance the quality of beef and contribute to consumer health in future studies.

5.
Adv Mater ; : e2405086, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940367

ABSTRACT

In situ polymerized solid-state electrolytes have attracted much attention due to high Li-ion conductivity, conformal interface contact, and low interface resistance, but are plagued by lithium dendrite, interface degradation, and inferior thermal stability, which thereby leads to limited lifespan and severe safety hazards for high-energy lithium metal batteries (LMBs). Herein, an in situ polymerized electrolyte is proposed by copolymerization of 1,3-dioxolane with 1,3,5-tri glycidyl isocyanurate (TGIC) as a cross-linking agent, which realizes a synergy of battery thermal safety and interface compatibility with Li anode. Functional TGIC enhances the electrolyte polymeric level. The unique carbon-formation mechanism facilitates flame retardancy and eliminates the battery fire risk. In the meantime, TGIC-derived inorganic-rich interphase inhibits interface side reactions and promotes uniform Li plating. Intrinsically safe LMBs with nonflammability and outstanding electrochemical performances under extreme temperatures (130 °C) are achieved. This functional polymer design shows a promising prospect for the development of safe LMBs.

6.
Adv Mater ; : e2406026, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38923609

ABSTRACT

While the construction of a donor-acceptor (D-A) structure has gained great attention across various scientific disciplines, such structures are seldomly reported within the field of hydrogen-bonded organic frameworks (HOFs). Herein, a D-A based HOF is synthesized, where the adjacent D-A pairs are connected by hydrogen bonds instead of the conventionally employed covalent bonds. This structural feature imparts material with a reduced energy gap between excited state and triplet state, thereby facilitating the intersystem crossing (ISC) and boosting the generation rate of single oxygen (quantum yield = 0.98). Consequently, the resulting material shows high performance for antimicrobial photodynamic therapy (PDT). The impact of D-A moiety is evident when comparing this finding to a parallel study conducted on an isoreticular HOF without a D-A structure. The study presented here provides in-depth insights into the photophysical properties of D-A pair in a hydrogen-bonded network, opening a new avenue to the design of innovative materials for efficient PDT.

7.
Article in English | MEDLINE | ID: mdl-38862426

ABSTRACT

The high-fidelity (HiFi) long-read sequencing technology developed by PacBio has greatly improved the base-level accuracy of genome assemblies. However, these assemblies still contain base-level errors, particularly within the error-prone regions of HiFi long reads. Existing genome polishing tools usually introduce overcorrections and haplotype switch errors when correcting errors in genomes assembled from HiFi long reads. Here, we describe an upgraded genome polishing tool - NextPolish2, which can fix base errors remaining in those "highly accurate" genomes assembled from HiFi long reads without introducing excessive overcorrections and haplotype switch errors. We believe that NextPolish2 has a great significance to further improve the accuracy of telomere-to-telomere (T2T) genomes. NextPolish2 is freely available at https://github.com/Nextomics/NextPolish2.


Subject(s)
Software , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Humans , Genomics/methods , Repetitive Sequences, Nucleic Acid/genetics , Genome/genetics
8.
Article in English | MEDLINE | ID: mdl-38913519

ABSTRACT

Generalizing face anti-spoofing (FAS) models to unseen distributions is challenging due to domain shifts. Previous domain generalization (DG) based FAS methods focus on learning invariant features across domains in the spatial space, which may be ineffective in detecting subtle spoof patterns. In this paper, we propose a novel approach called Frequency Space Disentanglement and Augmentation (FSDA) for generalizable FAS. Specifically, we leverage Fourier transformation to analyze face images in the frequency space, where the amplitude spectrum captures low-level texture information that forms distinct visual appearances, and the phase spectrum corresponds to the content information. We hypothesize that the liveness of a face is more related to these low-level patterns rather than high-level content information. To locate spoof traces, we disentangle the amplitude spectrum into domain-related and spoof-related components using either empirical or learnable strategies. We then propose a frequency space augmentation technique that mixes the disentangled components of two images to synthesize new variations. By imposing a distillation loss and a consistency loss on the augmented samples, our model learns to capture spoof patterns that are robust to both domain and spoof type variations. Extensive experiments on four FAS datasets demonstrate the superiority of our method in improving the generalization ability of FAS models in various unseen scenarios.

9.
J Asian Nat Prod Res ; : 1-8, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934326

ABSTRACT

A phytochemical investigation on the 80% EtOH extract of the leaves of Paederia scandens (Lour.) Merr. resulted into the isolation of three undescribed iridoid glycosides, 10-O-trans-p-coumaroyl-(4R,6R)-3,4-dihydro-3α-methylthiopaederoside (1), 10-O-trans-feruloyl-(4S,6R)-3,4-dihydro-2'-O-3α-paederoside (2), and 10-O-trans-caffeoyl-paederosidic acid ethyl ester (3). The structures of the new compounds were elucidated by spectral methods such as 1D and 2D (1H-1H COSY, HMQC, and HMBC) NMR spectroscopy, as well as high resolution mass spectrometry. The isolated compounds were tested in vitro for cytotoxic activity against five endocrine tumor cell lines. As a result, compound 1 exhibited some cytotoxicities against all the tested tumor cell lines with IC50 value less than 20.0 µM.

10.
J Cell Physiol ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828915

ABSTRACT

In our previous study, circ_015343 was found to inhibit the viability and proliferation of ovine mammary epithelial cells (OMECs) and the expression levels of milk fat synthesis marker genes, but the regulatory mechanism underlying the processes is still unclear. Accordingly in this study, the target relationships between circ_015343 with miR-25 and between miR-25 with insulin induced gene 1 (INSIG1) were verified, and the functions of miR-25 and INSIG1 were investigated in OMECs. The dual-luciferase reporter assay revealed that miR-25 mimic remarkably decreased the luciferase activity of circ_015343 in HEK293T cells cotransfected with a wild-type vector, while it did not change the activity of circ_015343 in HEK293T cells cotransfected with a mutant vector. These suggest that cic_015343 can adsorb and bind miR-25. The miR-25 increased the viability and proliferation of OMECs, and the content of triglycerides in OMECs. In addition, INSIG1 was found to be a target gene of miR-25 using a dual-luciferase reporter assay. Overexpression of INSIG1 decreased the viability, proliferation, and level of triglycerides of OMECs. In contrast, the inhibition of INSIG1 in expression had the opposite effect on activities and triglycerides of OMECs with overexpressed INSIG1. A rescue experiment revealed that circ_015343 alleviated the inhibitory effect of miR-25 on the mRNA and protein abundance of INSIG1. These results indicate that circ_015343 sponges miR-25 to inhibit the activities and content of triglycerides of OMECs by upregulating the expression of INSIG1 in OMECs. This study provided new insights for understanding the genetic molecular mechanism of lactation traits in sheep.

11.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892214

ABSTRACT

Jeryak is the F1 generation of the cross between Gannan yak and Jersey cattle, which has the advantages of fast growth and high adaptability. The growth and development of skeletal muscle is closely linked to meat production and the quality of meat. However, the molecular regulatory mechanisms of muscle growth differences between Gannan yak and Jeryak analyzed from the perspective of chromatin opening have not been reported. In this study, ATAC-seq was used to analyze the difference of chromatin openness in longissimus muscle of Gannan yak and Jeryak. It was found that chromatin accessibility was more enriched in Jeryak compared to Gannan yak, especially in the range of the transcription start site (TSS) ± 2 kb. GO and KEGG enrichment analysis indicate that differential peak-associated genes are involved in the negative regulation of muscle adaptation and the Hippo signaling pathway. Integration analysis of ATAC-seq and RNA-seq revealed overlapping genes were significantly enriched during skeletal muscle cell differentiation and muscle organ morphogenesis. At the same time, we screened FOXO1, ZBED6, CRY2 and CFL2 for possible involvement in skeletal muscle development, constructed a genes and transcription factors network map, and found that some transcription factors (TFs), including YY1, KLF4, KLF5 and Bach1, were involved in skeletal muscle development. Overall, we have gained a comprehensive understanding of the key factors that impact skeletal muscle development in various breeds of cattle, providing new insights for future analysis of the molecular regulatory mechanisms involved in muscle growth and development.


Subject(s)
Muscle, Skeletal , RNA-Seq , Animals , Cattle/genetics , Muscle, Skeletal/metabolism , Muscle, Skeletal/growth & development , Chromatin Immunoprecipitation Sequencing , Muscle Development/genetics , Chromatin/genetics , Chromatin/metabolism , Meat/analysis , Transcription Factors/genetics , Transcription Factors/metabolism
12.
Genomics ; 116(4): 110857, 2024 07.
Article in English | MEDLINE | ID: mdl-38729453

ABSTRACT

BACKGROUND: Yaks have unique adaptive mechanisms to the hypoxic environment, in which the kidney plays an important role. The aim of this study was to explore the histological changes of yak kidney at different altitudes and the metabolites and genes associated with adaptation to the hypoxic environment. METHODS: We analyzed the tissue structure and transcriptomic metabolomic data of yak kidney tissue at two altitudes, 2600 and 4400 m. We compared and identified the morphological adaptations of the kidney and the metabolites and genes associated with hypoxia adaptation in yaks. Changes in renal morphological adaptations, differential metabolites and genes were compared and identified, combining the two in a joint analysis. RESULTS: High-altitude yak kidneys showed significant adaptive changes: increased mitochondria, increased glomerular thylakoid area, and decreased localized ribosomes. Transcriptomics and metabolomics identified 69 DAMs (Differential metabolites) and 594 DEGs (differential genes). Functional enrichment analysis showed that the DAMs were associated with protein digestion and absorption, ABC transporter, and MTOR signaling pathway; the DEGs were significantly enriched in Cholesterol metabolism and P53 signaling pathway. The joint analysis indicated that metabolites such as lysine and arginine, as well as key genes such as ABCB5 and COL1A2, were particularly affected under hypoxic conditions, whereas changes in mitochondria in the tissue structure may be related to the expression of MFN1 and OPA1, and changes in glomerular thylakoid membranes are related to VEGFA and TGFB3. CONCLUSION: The kidney regulates metabolites and gene expression related to hormone synthesis, protein metabolism, and angiogenesis by adjusting the mitochondrial and glomerular thylakoid membrane structure to support the survival of yaks in high-altitude environments.


Subject(s)
Altitude , Kidney , Transcriptome , Animals , Cattle , Kidney/metabolism , Hypoxia/metabolism , Hypoxia/genetics , Adaptation, Physiological , Mitochondria/metabolism , Mitochondria/genetics
13.
Org Lett ; 26(22): 4654-4659, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38804575

ABSTRACT

Herein, a gold-catalyzed cascade reaction of yne-enones with iminooxindoles has been developed through a cascade cycloisomerization/(3 + 2) annulation process. This approach provides a straightforward and efficient route for the synthesis of functionalized 3,2'-pyrrolidinyl-spirooxindoles in high reactivity and broad substrate scope with excellent cis-selectivity. Moreover, the subsequent functionalization of furan units allows for the diverse synthesis of spirooxindole derivatives, which have demonstrated good antitumoral activity.

15.
Brain ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701344

ABSTRACT

The implication of 5-hydroxytryptamine 2C receptor (5-HT2CR) in depression is a topic of debate, and the underlying mechanisms remain largely unclear. We now elucidate hippocampal excitation-inhibition (E/I) balance underlies the regulatory effects of 5-HT2CR in depression. Molecular biological analyses showed that chronic mild stress (CMS) reduced the expression of 5-HT2CR in hippocampus. We revealed that inhibition of 5-HT2CR induced depressive-like behaviors, reduced GABA release and shifted the E/I balance towards excitation in CA3 pyramidal neurons by using behavioral analyses, microdialysis coupled with mass spectrum, and electrophysiological recording. Moreover, 5-HT2CR modulated neuronal nitric oxide synthase (nNOS)-carboxy-terminal PDZ ligand of nNOS (CAPON) interaction through influencing intracellular Ca2+ release, as determined by fiber photometry and coimmunoprecipitation. Notably, disruption of nNOS-CAPON by specific small molecule compound ZLc-002 or AAV-CMV-CAPON-125C-GFP, abolished 5-HT2CR inhibition-induced depressive-like behaviors, as well as the impairment in soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly-mediated GABA vesicle release and a consequent E/I imbalance. Importantly, optogenetic inhibition of CA3 GABAergic neurons prevented the effects of AAV-CMV-CAPON-125C-GFP on depressive behaviors in the presence of 5-HT2CR antagonist. Conclusively, our findings disclose the regulatory role of 5-HT2CR in depressive-like behaviors and highlight the hippocampal nNOS-CAPON coupling-triggered E/I imbalance as a pivotal cellular event underpinning the behavioral consequences of 5-HT2CR inhibition.

16.
Genome Biol ; 25(1): 107, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38671502

ABSTRACT

Long-read sequencing data, particularly those derived from the Oxford Nanopore sequencing platform, tend to exhibit high error rates. Here, we present NextDenovo, an efficient error correction and assembly tool for noisy long reads, which achieves a high level of accuracy in genome assembly. We apply NextDenovo to assemble 35 diverse human genomes from around the world using Nanopore long-read data. These genomes allow us to identify the landscape of segmental duplication and gene copy number variation in modern human populations. The use of NextDenovo should pave the way for population-scale long-read assembly using Nanopore long-read data.


Subject(s)
DNA Copy Number Variations , Genome, Human , Humans , High-Throughput Nucleotide Sequencing/methods , Software , Nanopore Sequencing/methods , Sequence Analysis, DNA/methods , Genomics/methods
17.
Mol Ther ; 32(6): 1779-1789, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38659224

ABSTRACT

Since the outbreak of monkeypox (mpox) in 2022, widespread concern has been placed on imposing an urgent demand for specific vaccines that offer safer and more effective protection. Using an efficient and scalable circular RNA (circRNA) platform, we constructed four circRNA vaccines that could induce robust neutralizing antibodies as well as T cell responses by expressing different surface proteins of mpox virus (MPXV), resulting in potent protection against vaccinia virus (VACV) in mice. Strikingly, the combination of the four circular RNA vaccines demonstrated the best protection against VACV challenge among all the tested vaccines. Our study provides a favorable approach for developing MPXV-specific vaccines by using a circular mRNA platform and opens up novel avenues for future vaccine research.


Subject(s)
Antibodies, Neutralizing , Monkeypox virus , RNA, Circular , Vaccinia virus , Animals , Mice , Vaccinia virus/genetics , Vaccinia virus/immunology , RNA, Circular/genetics , Antibodies, Neutralizing/immunology , Monkeypox virus/immunology , Monkeypox virus/genetics , Antibodies, Viral/immunology , Vaccinia/prevention & control , Vaccinia/immunology , Mpox (monkeypox)/prevention & control , Mpox (monkeypox)/immunology , Viral Vaccines/immunology , Viral Vaccines/genetics , Humans , Disease Models, Animal , Female , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
18.
Sci Rep ; 14(1): 8618, 2024 04 14.
Article in English | MEDLINE | ID: mdl-38616216

ABSTRACT

The adaptability of cultured fish to complex flow conditions is crucial for their survival after being released into the wild. Running water in natural environments poses significant challenges for the proliferation and release of cultured fish. This study aimed to investigate the effects of flow stimulation on the adjustment capacity of cultured fish to cope with running water. The target fish were cultured grass carp. An annular flume was used to conduct tests on training and control groups. The results demonstrated an enhancement in the adjustment capacity of cultured fish following appropriate flow stimulation training. (1) The trained fish exhibited a heightened preference for low-velocity areas. (2) The trained fish displayed the ability to select a route characterized by low energy consumption, predominantly following the periphery of the low-velocity area. This suggested that an appropriate flow velocity could improve the sensitivity of training fish to water flow information, and their adjustment capacity to cope with running water improved to a certain extent. A higher adjustment capacity allowed them to process flow rate information rapidly and identify a migration strategy with lower energy consumption. This study provides a useful reference for enhancing the survival rate of grass carp through stock enhancement initiatives and contributes to the sustainability of freshwater ecosystems.


Subject(s)
Carps , Ecosystem , Animals , Environment , Fresh Water , Water
19.
Pain ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38598349

ABSTRACT

ABSTRACT: Tendon injury produces intractable pain and disability in movement, but the medications for analgesia and restoring functional integrity of tendon are still limited. In this study, we report that proteinase-activated receptor 2 (PAR2) activation in dorsal root ganglion (DRG) neurons contributes to chronic pain and tendon histopathological changes produced by Achilles tendon partial transection injury (TTI). Tendon partial transection injury increases the expression of PAR2 protein in both somata of DRG neurons and their peripheral terminals within the injured Achilles tendon. Activation of PAR2 promotes the primary sensory neuron plasticity by activating downstream cAMP-PKA pathway, phosphorylation of PKC, CaMKII, and CREB. Blocking PAR2 signaling by PAR2 small-interference RNA or antagonistic peptide PIP delays the onset of TTI-induced pain, reverses the ongoing pain, as well as inhibits sensory nerve sprouting, and promotes structural remodeling of the injured tendon. Vitamin B complex (VBC), containing thiamine (B1), pyridoxine (B6), and cyanocobalamin (B12), is effective to ameliorate TTI-induced pain, inhibit ectopic nerve sprouting, and accelerate tendon repair, through suppressing PAR2 activation. These findings reveal a critical role of PAR2 signaling in the development of chronic pain and histopathological alterations of injured tendon following Achilles tendon injury. This study suggests that the pharmaceuticals targeting PAR2, such as VBC, may be an effective approach for the treatment of tendon injury-induced pain and promoting tendon repair.

SELECTION OF CITATIONS
SEARCH DETAIL
...