Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Drug Discov Today ; 16(23-24): 1052-60, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21875682

ABSTRACT

The anti-angiogenic class of drugs is one of the few where representatives have gained international approval for clinical use in oncology during the past decade. Most of the biological and clinical activity of the currently available generation of anti-angiogenic drugs targets vascular endothelial growth factor (VEGF) and its related pathways. However, the clinical benefits associated with the use of these drugs have, so far, been limited. There is, therefore, an unmet need for biomarkers that can be used to identify patients who are most likely to benefit therapeutically and also to predict the best schedule and dosage for these drugs. Here, we discuss some of the emerging new combination strategies involving the approved anti-angiogenic drugs, some of the emerging targets associated with neoplastic angiogenesis and some novel agents used as a paradigm of the next generation of anti-angiogenic drugs.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Neoplasms/blood supply , Neoplasms/drug therapy , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Angiogenesis Inhibitors/therapeutic use , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Humans , Neoplasms/metabolism , Neovascularization, Pathologic/drug therapy , Vascular Endothelial Growth Factor A/metabolism
2.
Ultrasound Med Biol ; 37(6): 909-21, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21531499

ABSTRACT

We report a comparison between tumor perfusion estimates acquired using contrast-enhanced MRI and motion-corrected contrast-enhanced ultrasound before and after treatment with AG-028262, a potent vascular endothelial growth factor receptor tyrosine kinase inhibitor. Antiangiogenic activity was determined by assessing weekly ultrasound and MRI images of rats with bilateral hind flank mammary adenocarcinomas before and after treatment with AG-028262. Images were acquired with a spoiled gradient, 1.5 T magnetic resonance sequence and a destruction-replenishment ultrasound protocol. For ultrasound, a time to 80% contrast replenishment was calculated for each tumor voxel; for MR imaging, a measure of local flow rate was estimated from a linear fit of minimum to maximum intensities. AG-028262 significantly decreased tumor growth and increased the time required to replenish tumor voxels with an ultrasound contrast agent from 2.66 to 4.54 s and to fill with an MR contrast agent from 29.5 to 50.8 s. Measures of flow rate derived from MRI and ultrasound demonstrated a positive linear correlation of r2 = 0.86.


Subject(s)
Angiogenesis Inhibitors/administration & dosage , Diffusion Magnetic Resonance Imaging/methods , Mammary Neoplasms, Experimental/diagnosis , Mammary Neoplasms, Experimental/drug therapy , Neovascularization, Pathologic/diagnosis , Neovascularization, Pathologic/drug therapy , Ultrasonography/methods , Adenocarcinoma/complications , Adenocarcinoma/diagnosis , Adenocarcinoma/drug therapy , Animals , Cell Line, Tumor , Female , Male , Mammary Neoplasms, Experimental/complications , Neovascularization, Pathologic/etiology , Rats , Rats, Inbred F344 , Receptors, Vascular Endothelial Growth Factor/drug effects , Treatment Outcome
3.
Cancer Res ; 71(4): 1362-73, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21212415

ABSTRACT

Genetic and molecular studies suggest that activin receptor-like kinase 1 (ALK1) plays an important role in vascular development, remodeling, and pathologic angiogenesis. Here we investigated the role of ALK1 in angiogenesis in the context of common proangiogenic factors [PAF; VEGF-A and basic fibroblast growth factor (bFGF)]. We observed that PAFs stimulated ALK1-mediated signaling, including Smad1/5/8 phosphorylation, nuclear translocation and Id-1 expression, cell spreading, and tubulogenesis of endothelial cells (EC). An antibody specifically targeting ALK1 (anti-ALK1) markedly inhibited these events. In mice, anti-ALK1 suppressed Matrigel angiogenesis stimulated by PAFs and inhibited xenograft tumor growth by attenuating both blood and lymphatic vessel angiogenesis. In a human melanoma model with acquired resistance to a VEGF receptor kinase inhibitor, anti-ALK1 also delayed tumor growth and disturbed vascular normalization associated with VEGF receptor inhibition. In a human/mouse chimera tumor model, targeting human ALK1 decreased human vessel density and improved antitumor efficacy when combined with bevacizumab (anti-VEGF). Antiangiogenesis and antitumor efficacy were associated with disrupted co-localization of ECs with desmin(+) perivascular cells, and reduction of blood flow primarily in large/mature vessels as assessed by contrast-enhanced ultrasonography. Thus, ALK1 may play a role in stabilizing angiogenic vessels and contribute to resistance to anti-VEGF therapies. Given our observation of its expression in the vasculature of many human tumor types and in circulating ECs from patients with advanced cancers, ALK1 blockade may represent an effective therapeutic opportunity complementary to the current antiangiogenic modalities in the clinic.


Subject(s)
Activin Receptors, Type II/antagonists & inhibitors , Angiogenesis Inhibitors/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Neoplasms/drug therapy , Neovascularization, Pathologic/drug therapy , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Angiogenesis Inhibitors/therapeutic use , Animals , Cells, Cultured , Down-Regulation/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Drug Synergism , Humans , Mice , Mice, SCID , Molecular Targeted Therapy/methods , Neoplasms/blood supply , Neoplasms/pathology , Neovascularization, Pathologic/pathology , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
4.
Cancer Res ; 70(24): 10243-54, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-21159645

ABSTRACT

Integrin α5ß1 is overexpressed in tumor-associated stroma and cancer cells, and has been implicated in angiogenesis, tumor survival, and metastasis. Antibody-dependent cellular cytotoxicity (ADCC) by immune effector cells has been shown to contribute to clinical efficacy for several IgG1 monoclonal antibody (mAb) therapeutics. Taking advantage of these two mechanisms, we generated a fully human, fragment crystalizable (Fc)-engineered IgG1 mAb, PF-04605412 (PF-5412), which specifically neutralizes α5 and binds the Fcγ receptors (FcγR) with enhanced affinity. In vitro, PF-5412 potently inhibited α5ß1-mediated intracellular signaling, cell adhesion, migration, and endothelial cell (EC) tubulogenesis. PF-5412 induced significantly greater ADCC in α5-expressing tumor cells and ECs compared with a wild-type IgG1 (IgG1/wt) or IgG2 of identical antigen specificity. The degree of ADCC correlated with the abundance of natural killer (NK) cells in the peripheral blood mononuclear cells but was independent of donor FcγRIIIa polymorphism. In animal studies, PF-5412 displayed robust and dose-dependent antitumor efficacy superior to that observed with IgG1/wt, IgG2, or IgG4 of identical antigen specificity. The degree of efficacy correlated with α5 expression, macrophage and NK cell infiltration, and NK activity in the tumor. Depletion of host macrophages abrogated antitumor activity, suggesting a critical contribution of macrophage-mediated antitumor activity of PF-5412. Combination of PF-5412 with sunitinib significantly improved antitumor efficacy compared with either agent alone. The dual mechanism of action and robust antitumor efficacy of PF-5412 support its clinical development for the treatment of a broad spectrum of human malignancies.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Antibodies, Monoclonal/pharmacology , Integrin alpha5beta1/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal, Humanized , Antibody-Dependent Cell Cytotoxicity , Bevacizumab , Endothelial Cells/cytology , Endothelial Cells/drug effects , Endothelial Cells/immunology , HEK293 Cells , Haplorhini , Humans , Immunoglobulin Fc Fragments/immunology , Immunoglobulin G/immunology , Indoles/pharmacology , Integrin alpha5beta1/biosynthesis , Killer Cells, Natural/immunology , Lung Neoplasms/immunology , Lung Neoplasms/secondary , Lung Neoplasms/therapy , Macrophages/immunology , Mice , Mice, Inbred BALB C , Mice, SCID , Mice, Transgenic , NIH 3T3 Cells , Phagocytosis/immunology , Pyrroles/pharmacology , Receptors, IgG/immunology , Sunitinib
5.
Cancer Res ; 70(24): 10090-100, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-20952508

ABSTRACT

Molecular and cellular mechanisms underlying resistance/low responsiveness to antiangiogenic compounds are under extensive investigations. Both populations of tumor and stroma (nontumor compartment) seem to contribute in inherent/acquired resistance to antiangiogenic therapy. Here, investigating in vivo efficacy of sunitinib in experimental models resulted in the identification of tumors that were resistant/sensitive to the therapy. Analysis of tumor protein lysates indicated a greater concentration of hepatocyte growth factor (HGF) in resistant tumors than in sensitive ones. In addition, using flow cytometry, c-Met expression was found to be significantly higher in endothelial cells than in tumor cells, suggesting that HGF might target the vascular endothelial cells in resistant tumors. Combination of sunitinib and a selective c-Met inhibitor significantly inhibited tumor growth compared with sunitinib or c-Met inhibitor alone in resistant tumors. Histology and in vitro analyses suggested that combination treatment mainly targeted the vasculature in the resistant tumors. Conversely, systemic injection of HGF in the sensitive tumor models conferred resistance to sunitinib through maintenance of tumor angiogenesis. In conclusion, our study indicates a role for HGF/c-Met pathway in development of resistance to antiangiogenic therapy and suggests a potential strategy to circumvent resistance to vascular endothelial growth factor receptor tyrosine kinase inhibitor in the clinic.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Hepatocyte Growth Factor/metabolism , Indoles/pharmacology , Neoplasms, Experimental/blood supply , Neoplasms, Experimental/drug therapy , Proto-Oncogene Proteins c-met/metabolism , Pyrroles/pharmacology , Animals , Drug Resistance, Neoplasm , Hepatocyte Growth Factor/biosynthesis , Hepatocyte Growth Factor/genetics , Humans , Mice , Mice, Nude , NIH 3T3 Cells , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Proto-Oncogene Proteins c-met/biosynthesis , Proto-Oncogene Proteins c-met/genetics , Signal Transduction , Sunitinib , Transfection
6.
Am J Pathol ; 176(4): 1927-40, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20185574

ABSTRACT

Ricinus communis agglutinin I (RCA I), a galactose-binding lectin from castor beans, binds to endothelial cells at sites of plasma leakage, but little is known about the amount and functional consequences of binding to tumor endothelial cells. We addressed this issue by examining the effects of RCA I on blood vessels of spontaneous pancreatic islet-cell tumors in RIP-Tag2 transgenic mice. After intravenous injection, RCA I bound strongly to tumor vessels but not to normal blood vessels. At 6 minutes, RCA I fluorescence of tumor vessels was largely diffuse, but over the next hour, brightly fluorescent dots appeared as the lectin was internalized by endothelial cells. RCA I injection led to a dose- and time-dependent decrease in vascular endothelial growth factor receptor-2 (VEGFR-2) immunoreactivity in tumor endothelial cells, with 95% loss over 6 hours. By comparison, VEGFR-3, CD31, and CD105 had decreases in the range of 21% to 33%. Loss of VEGFR-2 was followed by increased activated caspase-3 in tumor vessels. Prior inhibition of VEGF signaling by AG-028262 decreased RCA I binding and internalization into tumor vessels. These findings indicate RCA I preferentially binds to and is internalized by tumor endothelial cells, which leads to VEGFR-2 down-regulation, endothelial cell apoptosis, and tumor vessel regression. Together, the results illustrate the selective impact of RCA I on VEGF signaling in tumor blood vessels.


Subject(s)
Apoptosis , Down-Regulation , Endothelial Cells/cytology , Gene Expression Regulation, Neoplastic , Plant Lectins/metabolism , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Animals , Dose-Response Relationship, Drug , Islets of Langerhans/cytology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neovascularization, Pathologic , Time Factors
7.
Cancer Res ; 69(10): 4527-36, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19401451

ABSTRACT

Vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), and their receptors are important targets in cancer therapy based on angiogenesis inhibition. However, it is unclear whether inhibition of VEGF and PDGF together is more effective than inhibition of either one alone. Here, we used two contrasting tumor models to compare the effects of inhibiting VEGF or PDGF alone, by adenovirally generated soluble receptors, to the effects of inhibiting both together. In RIP-Tag2 tumors, VEGF and PDGF inhibition together reduced tumor vascularity and abundance of pericytes. However, VEGF inhibition reduced tumor vascularity without decreasing pericyte density, and PDGF inhibition reduced pericytes without reducing tumor vascularity. By contrast, in Lewis lung carcinomas (LLC), inhibition of VEGF or PDGF reduced blood vessels and pericytes to the same extent as did inhibition of both together. Similar results were obtained using tyrosine kinase inhibitors AG-013736 and imatinib. In LLC, VEGF expression was largely restricted to pericytes and PDGF was largely restricted to endothelial cells, but, in RIP-Tag2 tumors, expression of both growth factors was more widespread and significantly greater than in LLC. These findings suggest that inhibition of PDGF in LLC reduced pericytes, and then tumor vessels regressed because pericytes were the main source of VEGF. The vasculature of RIP-Tag2 tumors, in which most VEGF is from tumor cells, was more resistant to PDGF inhibition. The findings emphasize the interdependence of pericytes and endothelial cells in tumors and the importance of tumor phenotype in determining the cellular effects of VEGF and PDGF inhibitors on tumor vessels.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Platelet-Derived Growth Factor/physiology , Vascular Endothelial Growth Factor A/physiology , Animals , Antineoplastic Agents/therapeutic use , Axitinib , Benzamides , Humans , Imatinib Mesylate , Imidazoles/therapeutic use , Immunoglobulin Fc Fragments/genetics , Indazoles/therapeutic use , Lung Neoplasms/blood supply , Lung Neoplasms/drug therapy , Mice , Mice, Inbred C57BL , Mice, Transgenic , Piperazines/therapeutic use , Platelet-Derived Growth Factor/antagonists & inhibitors , Pyrimidines/therapeutic use , Reverse Transcriptase Polymerase Chain Reaction , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-1/drug effects , Vascular Endothelial Growth Factor Receptor-1/genetics
8.
Clin Cancer Res ; 14(22): 7272-83, 2008 Nov 15.
Article in English | MEDLINE | ID: mdl-19010843

ABSTRACT

PURPOSE: Axitinib (AG-013736) is a potent and selective inhibitor of vascular endothelial growth factor (VEGF) receptor tyrosine kinases 1 to 3 that is in clinical development for the treatment of solid tumors. We provide a comprehensive description of its in vitro characteristics and activities, in vivo antiangiogenesis, and antitumor efficacy and translational pharmacology data. EXPERIMENTAL DESIGN: The potency, kinase selectivity, pharmacologic activity, and antitumor efficacy of axitinib were assessed in various nonclinical models. RESULTS: Axitinib inhibits cellular autophosphorylation of VEGF receptors (VEGFR) with picomolar IC(50) values. Counterscreening across multiple kinase and protein panels shows it is selective for VEGFRs. Axitinib blocks VEGF-mediated endothelial cell survival, tube formation, and downstream signaling through endothelial nitric oxide synthase, Akt and extracellular signal-regulated kinase. Following twice daily oral administration, axitinib produces consistent and dose-dependent antitumor efficacy that is associated with blocking VEGFR-2 phosphorylation, vascular permeability, angiogenesis, and concomitant induction of tumor cell apoptosis. Axitinib in combination with chemotherapeutic or targeted agents enhances antitumor efficacy in many tumor models compared with single agent alone. Dose scheduling studies in a human pancreatic tumor xenograft model show that simultaneous administration of axitinib and gemcitabine without prolonged dose interruption or truncation of axitinib produces the greatest antitumor efficacy. The efficacious drug concentrations predicted in nonclinical studies are consistent with the range achieved in the clinic. Although axitinib inhibits platelet-derived growth factor receptors and KIT with nanomolar in vitro potencies, based on pharmacokinetic/pharmacodynamic analysis, axitinib acts primarily as a VEGFR tyrosine kinase inhibitor at the current clinical exposure. CONCLUSIONS: The selectivity, potency for VEGFRs, and robust nonclinical activity may afford broad opportunities for axitinib to improve cancer therapy.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Imidazoles/pharmacology , Indazoles/pharmacology , Neoplasms, Experimental/drug therapy , Neovascularization, Pathologic/drug therapy , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Signal Transduction/drug effects , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Axitinib , Blotting, Western , Cell Line, Tumor , Drug Synergism , Female , Humans , Immunohistochemistry , Immunoprecipitation , Mice , Mice, Nude , Protein Kinase Inhibitors/pharmacology , Receptors, Vascular Endothelial Growth Factor/drug effects , Xenograft Model Antitumor Assays
9.
J Clin Invest ; 116(10): 2610-21, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17016557

ABSTRACT

Inhibitors of VEGF signaling can block angiogenesis and reduce tumor vascularity, but little is known about the reversibility of these changes after treatment ends. In the present study, regrowth of blood vessels in spontaneous RIP-Tag2 tumors and implanted Lewis lung carcinomas in mice was assessed after inhibition of VEGF receptor signaling by AG-013736 or AG-028262 for 7 days. Both agents caused loss of 50%-60% of tumor vasculature. Empty sleeves of basement membrane were left behind. Pericytes also survived but had less alpha-SMA immunoreactivity. One day after drug withdrawal, endothelial sprouts grew into empty sleeves of basement membrane. Vessel patency and connection to the bloodstream followed close behind. By 7 days, tumors were fully revascularized, and the pericyte phenotype returned to baseline. Importantly, the regrown vasculature regressed as much during a second treatment as it did in the first. Inhibition of MMPs or targeting of type IV collagen cryptic sites by antibody HUIV26 did not eliminate the sleeves or slow revascularization. These results suggest that empty sleeves of basement membrane and accompanying pericytes provide a scaffold for rapid revascularization of tumors after removal of anti-VEGF therapy and highlight their importance as potential targets in cancer therapy.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Carcinoma, Lewis Lung/drug therapy , Insulinoma/drug therapy , Neovascularization, Pathologic/drug therapy , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Actins/metabolism , Angiogenesis Inhibitors/pharmacology , Animals , Antibodies, Monoclonal/pharmacology , Axitinib , Basement Membrane/drug effects , Basement Membrane/metabolism , Basement Membrane/pathology , Blood Vessels/drug effects , Blood Vessels/metabolism , Blood Vessels/pathology , Carcinoma, Lewis Lung/blood supply , Carcinoma, Lewis Lung/pathology , Collagen Type IV/immunology , Collagen Type IV/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Imidazoles/pharmacology , Imidazoles/therapeutic use , Indazoles/pharmacology , Indazoles/therapeutic use , Insulinoma/blood supply , Insulinoma/pathology , Matrix Metalloproteinase Inhibitors , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neoplasms/blood supply , Neoplasms/drug therapy , Neoplasms/pathology , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Organic Chemicals/pharmacology , Pericytes/drug effects , Pericytes/metabolism , Pericytes/pathology , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Receptor, Platelet-Derived Growth Factor beta/metabolism , Treatment Outcome , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/metabolism
10.
Cancer Res ; 66(3): 1434-45, 2006 Feb 01.
Article in English | MEDLINE | ID: mdl-16452199

ABSTRACT

Antibodies and other macromolecular therapeutics can gain access to tumor cells via leaky tumor vessels. Inhibition of vascular endothelial growth factor (VEGF) signaling can reduce the vascularity of tumors and leakiness of surviving vessels, but little is known about how these changes affect the distribution of antibodies within tumors. We addressed this issue by examining the distribution of extravasated antibodies in islet cell tumors of RIP-Tag2 transgenic mice and implanted Lewis lung carcinomas using fluorescence and confocal microscopic imaging. Extravasated nonspecific immunoglobulin G (IgG) and antibodies to fibrin or E-cadherin accumulated in irregular patchy regions of stroma. Fibrin also accumulated in these regions. Anti-E-cadherin antibody, which targets epitopes on tumor cells of RIP-Tag2 adenomas, was the only antibody to achieve detectable levels within tumor cell clusters at 6 hours after i.v. injection. Treatment for 7 days with AG-013736, a potent inhibitor of VEGF signaling, reduced the tumor vascularity by 86%. The overall area density of extravasated IgG/antibodies decreased after treatment but the change was less than the reduction in vascularity and actually increased when expressed per surviving tumor vessel. Accumulation of anti-E-cadherin antibody in tumor cell clusters was similarly affected. The patchy pattern of antibodies in stroma after treatment qualitatively resembled untreated tumors and surprisingly coincided with sleeves of basement membrane left behind after pruning of tumor vessels. Together, the findings suggest that antibody transport increases from surviving tumor vessels after normalization by inhibition of VEGF signaling. Basement membrane sleeves may facilitate this transport. Antibodies preferentially distribute to tumor stroma but also accumulate on tumor cells if binding sites are accessible.


Subject(s)
Adenoma, Islet Cell/blood supply , Adenoma, Islet Cell/immunology , Antibodies, Neoplasm/metabolism , Carcinoma, Lewis Lung/blood supply , Carcinoma, Lewis Lung/immunology , Immunoglobulin G/metabolism , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Adenoma, Islet Cell/blood , Animals , Antibodies, Neoplasm/blood , Antibodies, Neoplasm/immunology , Axitinib , Cadherins/immunology , Carcinoma, Lewis Lung/blood , Fibrin/immunology , Fibrin/metabolism , Imidazoles/pharmacology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Indazoles/pharmacology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microspheres , Neovascularization, Pathologic/blood , Neovascularization, Pathologic/immunology , Neovascularization, Pathologic/metabolism , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism
11.
J Magn Reson Imaging ; 22(4): 511-9, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16161072

ABSTRACT

PURPOSE: To investigate the heterogeneity in the angiogenic response of a human breast cancer xenograft to a novel vascular endothelial growth factor (VEGF)-receptor tyrosine kinase inhibitor, AG-013736, using dynamic contrast-enhanced MR imaging (DCE-MRI). MATERIALS AND METHODS: Changes in pharmacokinetic parameters in a seven-day interval were compared between AG-treated and control groups, using Gd-DTPA and albumin-(Gd-DTPA)30. A voxel-by-voxel analysis was performed to produce parametric spatial pharmacokinetic parametric maps and histograms. Histogram segmentation was used to quantify the heterogeneity in tumor response to therapy, and compared with conventional descriptive measures of distribution in terms of their capacity to separate control from AG-treated tumors. RESULTS: The albumin-(Gd-DTPA)30 endothelial transfer constant, Kps, showed changes with AG-013736 treatment and tumor growth. The changes were highly heterogeneous for individual segments of the histogram with different Kps values, and the overall patterns in which the frequency distribution changed differed significantly between the two groups. A change in the number of voxels with Kps ranging from 0.03 to 0.14 mL/min/(100 mL tissue) was the most sensitive variable for separating control from AG-treated tumors (P = 0.0008). Parametric maps of the kinetic parameters also showed spatial heterogeneity in tumor response to treatment. The Kps maps depicted rapid development of central necrosis as a result of AG-013736 treatment. Maps of v(p) demonstrated a marked increase at peripheral regions of necrotic areas. Similar trends were noted in the Gd-DTPA rate constant Ktrans distribution. CONCLUSION: This study demonstrates the value of histogram analysis of maps of pharmacokinetic parameters for assessing heterogeneity in tumor response to antiangiogenic therapy. Changes in the number of voxels within certain segments of the Kps histogram were the most sensitive variable for separating control from AG-treated tumors.


Subject(s)
Breast Neoplasms/pathology , Indazoles/pharmacology , Magnetic Resonance Imaging/methods , Protein-Tyrosine Kinases/antagonists & inhibitors , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Animals , Axitinib , Female , Humans , Image Enhancement , Imidazoles , Mice , Mice, Nude , Neovascularization, Pathologic , Transplantation, Heterologous
12.
Am J Pathol ; 165(1): 35-52, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15215160

ABSTRACT

Angiogenesis inhibitors are receiving increased attention as cancer therapeutics, but little is known of the cellular effects of these inhibitors on tumor vessels. We sought to determine whether two agents, AG013736 and VEGF-Trap, that inhibit vascular endothelial growth factor (VEGF) signaling, merely stop angiogenesis or cause regression of existing tumor vessels. Here, we report that treatment with these inhibitors caused robust and early changes in endothelial cells, pericytes, and basement membrane of vessels in spontaneous islet-cell tumors of RIP-Tag2 transgenic mice and in subcutaneously implanted Lewis lung carcinomas. Strikingly, within 24 hours, endothelial fenestrations in RIP-Tag2 tumors disappeared, vascular sprouting was suppressed, and patency and blood flow ceased in some vessels. By 7 days, vascular density decreased more than 70%, and VEGFR-2 and VEGFR-3 expression was reduced in surviving endothelial cells. Vessels in Lewis lung tumors, which lacked endothelial fenestrations, showed less regression. In both tumors, pericytes did not degenerate to the same extent as endothelial cells, and those on surviving tumor vessels acquired a more normal phenotype. Vascular basement membrane persisted after endothelial cells degenerated, providing a ghost-like record of pretreatment vessel number and location and a potential scaffold for vessel regrowth. The potent anti-vascular action observed is evidence that VEGF signaling inhibitors do more than stop angiogenesis. Early loss of endothelial fenestrations in RIP-Tag2 tumors is a clue that vessel phenotype may be predictive of exceptional sensitivity to these inhibitors.


Subject(s)
Basement Membrane/drug effects , Endothelium, Vascular/drug effects , Neoplasms/blood supply , Neovascularization, Pathologic , Signal Transduction/drug effects , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Animals , Basement Membrane/pathology , Basement Membrane/ultrastructure , Endothelium, Vascular/pathology , Endothelium, Vascular/ultrastructure , Fluorescein-5-isothiocyanate , Fluorescent Dyes , Immunohistochemistry , Lectins/metabolism , Lung Neoplasms/blood supply , Lung Neoplasms/pathology , Lung Neoplasms/ultrastructure , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Confocal , Microscopy, Electron , Microscopy, Electron, Scanning , Neoplasms/pathology , Neoplasms/ultrastructure , Neovascularization, Pathologic/drug therapy , Vascular Endothelial Growth Factor A/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...