Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38894144

ABSTRACT

Gait, a manifestation of one's walking pattern, intricately reflects the harmonious interplay of various bodily systems, offering valuable insights into an individual's health status. However, the current study has shortcomings in the extraction of temporal and spatial dependencies in joint motion, resulting in inefficiencies in pathological gait classification. In this paper, we propose a Frequency Pyramid Graph Convolutional Network (FP-GCN), advocating to complement temporal analysis and further enhance spatial feature extraction. specifically, a spectral decomposition component is adopted to extract gait data with different time frames, which can enhance the detection of rhythmic patterns and velocity variations in human gait and allow a detailed analysis of the temporal features. Furthermore, a novel pyramidal feature extraction approach is developed to analyze the inter-sensor dependencies, which can integrate features from different pathways, enhancing both temporal and spatial feature extraction. Our experimentation on diverse datasets demonstrates the effectiveness of our approach. Notably, FP-GCN achieves an impressive accuracy of 98.78% on public datasets and 96.54% on proprietary data, surpassing existing methodologies and underscoring its potential for advancing pathological gait classification. In summary, our innovative FP-GCN contributes to advancing feature extraction and pathological gait recognition, which may offer potential advancements in healthcare provisions, especially in regions with limited access to medical resources and in home-care environments. This work lays the foundation for further exploration and underscores the importance of remote health monitoring, diagnosis, and personalized interventions.


Subject(s)
Gait , Neural Networks, Computer , Humans , Gait/physiology , Algorithms , Walking/physiology
2.
Sensors (Basel) ; 22(22)2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36433380

ABSTRACT

Although gait recognition has been greatly improved by efforts from many researchers in recent years, its performance is still unsatisfactory due to the lack of gait information under the real scenariowhere only one or two images may be used for recognition. In this paper, a new gait recognition framework is brought about which can combine the long-short-term attention modules on silhouette images over the whole sequence and the real human physiological information calculated by a monocular image. The contributions of this work include the following: (1) Fusing the global long-term attention (GLTA) and local short-term attention (LSTA) over the whole query sequence to improve the gait recognition accuracy, where both the short-term gait feature (from two or three frames) and long-term feature (from the whole sequence) are extracted; (2) presenting a method to calculate the real personal static and dynamic physiological features through a single monocular image; (3) by efficiently applying the human physiological information, a new physiological feature extraction (PFE) network is proposed to concatenate the physiological information with silhouette for gait recognition. Through the experiments between the CASIA-B and Multi-state Gait datasets, the effectiveness and efficiency of the proposed method are proven. Under three different walking conditions of the CASIA-B dataset, the mean accuracy of rank-1 in our method is up to 89.6%, and in the Multi-state Gait dataset, wearing different clothes, the mean accuracy of rank-1 in our method is 2.4% higher than the other works.


Subject(s)
Algorithms , Gait , Humans , Gait/physiology , Research Design , Data Collection
SELECTION OF CITATIONS
SEARCH DETAIL
...