Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 18(17): 11165-11182, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38626338

ABSTRACT

Glioblastoma (GBM) is an aggressive brain cancer that is highly resistant to treatment including chimeric antigen receptor (CAR)-T cells. Tumor-associated microglia and macrophages (TAMs) are major contributors to the immunosuppressive GBM microenvironment, which promotes tumor progression and treatment resistance. Hence, the modulation of TAMs is a promising strategy for improving the immunotherapeutic efficacy of CAR-T cells against GBM. Molecularly targeting drug pexidartinib (PLX) has been reported to re-educate TAMs toward the antitumorigenic M1-like phenotype. Here, we developed a cell-drug integrated technology to reversibly conjugate PLX-containing liposomes (PLX-Lip) to CAR-T cells and establish tumor-responsive integrated CAR-T cells (PLX-Lip/AZO-T cells) as a combination therapy for GBM. We used a mouse model of GBM to show that PLX-Lip was stably maintained on the surface of PLX-Lip/AZO-T cells in circulation and these cells could transmigrate across the blood-brain barrier and deposit PLX-Lip at the tumor site. The uptake of PLX-Lip by TAMs effectively re-educated them into the M1-like phenotype, which in turn boosted the antitumor function of CAR-T cells. GBM tumor growth was completely eradicated in 60% of the mice after receiving PLX-Lip/AZO-T cells and extended their overall survival time beyond 50 days; in comparison, the median survival time of mice in other treatment groups did not exceed 35 days. Overall, we demonstrated the successful fusion of CAR-T cells and small-molecule drugs with the cell-drug integrated technology. These integrated CAR-T cells provided a superior combination strategy for GBM treatment and presented a reference for the construction of integrated cell-based drugs.


Subject(s)
Aminopyridines , Brain Neoplasms , Glioblastoma , Microglia , Receptors, Chimeric Antigen , Glioblastoma/therapy , Glioblastoma/pathology , Glioblastoma/immunology , Glioblastoma/drug therapy , Animals , Mice , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Humans , Microglia/drug effects , Microglia/metabolism , Microglia/immunology , Brain Neoplasms/therapy , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Brain Neoplasms/drug therapy , Liposomes/chemistry , Pyrroles/chemistry , Pyrroles/pharmacology , Immunotherapy , Macrophages/immunology , Macrophages/metabolism , Macrophages/drug effects , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Cell Line, Tumor , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/metabolism , Immunotherapy, Adoptive , T-Lymphocytes/immunology , T-Lymphocytes/drug effects
2.
Eur J Med Chem ; 233: 114227, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35247754

ABSTRACT

SUMOylation is a key post-translational modification that involves the covalent attachment of small ubiquitin-like modifier (SUMO) to the lysine residues of target proteins. The well-balanced SUMOylation is essential for normal cellular behaviors, while disturbance of SUMOylation is associated with various cancers and other diseases. Herein, we summarize the structures and biological functions of proteins involved in the SUMOylation process, their dysregulation in human diseases, and the discovery of small-molecular inhibitors targeting this pathway. In addition, we highlight the emerging trends in this field.


Subject(s)
Neoplasms , Small Ubiquitin-Related Modifier Proteins , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Protein Processing, Post-Translational , Small Ubiquitin-Related Modifier Proteins/genetics , Small Ubiquitin-Related Modifier Proteins/metabolism , Sumoylation , Ubiquitin/metabolism
3.
Chem Sci ; 12(35): 11762-11768, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34659713

ABSTRACT

The addition of sulfonyl radicals to alkenes and alkynes is a valuable method for constructing useful highly functionalized sulfonyl compounds. The underexplored alkoxy- and fluorosulfonyl radicals are easily accessed by CF3 radical addition to readily available allylsulfonic acid derivatives and then ß-fragmentation. These substituted sulfonyl radicals add to aryl alkyl alkynes to give vinyl radicals that are trapped by trifluoromethyl transfer to provide tetra-substituted alkenes bearing the privileged alkoxy- or fluorosulfonyl group on one carbon and a trifluoromethyl group on the other. This process exhibits broad functional group compatibility and allows for the late-stage functionalization of drug molecules, demonstrating its potential in drug discovery and chemical biology.

SELECTION OF CITATIONS
SEARCH DETAIL
...