Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
Schizophr Bull ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38815987

ABSTRACT

BACKGROUND AND HYPOTHESIS: Brain development/aging is not uniform across individuals,spawning efforts to characterize brain age from a biological perspective to model the effects of disease and maladaptive life processes on the brain. The brain age gap represents the discrepancy between estimated brain biological age and chronological age (in this case, based on structural magnetic resonance imaging, MRI). Structural MRI studies report an increased brain age gap (biological age > chronological age) in schizophrenia, with a greater brain age gap related to greater negative symptom severity. Less is known regarding the nature of this gap early in schizophrenia (ESZ), if this gap represents a psychosis conversion biomarker in clinical high-risk (CHR-P) individuals, and how altered brain development and/or agingmap onto specific symptom facets. STUDY DESIGN: Using structural MRI, we compared the brain age gap among CHR-P (n = 51), ESZ (n = 78), and unaffected comparison participants (UCP; n = 90), and examined associations with CHR-P psychosis conversion (CHR-P converters n = 10; CHR-P non-converters; n = 23) and positive and negative symptoms. STUDY RESULTS: ESZ showed a greater brain age gap relative to UCP and CHR-P (Ps < .010). CHR-P individuals who converted to psychosis showed a greater brain age gap (P = .043) relative to CHR-P non-converters. A larger brain age gap in ESZ was associated with increased experiential (P = .008), but not expressive negative symptom severity. CONCLUSIONS: Consistent with schizophrenia pathophysiological models positing abnormal brain maturation, results suggest abnormal brain development is present early in psychosis. An increased brain age gap may be especially relevant to motivational and functional deficits in schizophrenia.

2.
Aquat Toxicol ; 272: 106945, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759526

ABSTRACT

Human impacts on ecological communities are pervasive and species must either move or adapt to changing environmental conditions. For environments polluted by contaminants, researchers have found hundreds of target pest species evolving increased tolerance, but we have substantially fewer cases of evolved tolerance in non-target species. When species do evolve increased tolerance, inducible tolerance can provide immediate protection and favor the evolution of increased tolerance over generations via genetic assimilation. Using a model larval amphibian (wood frogs, Rana sylvatica), we examined the tolerance of 15 populations from western Pennsylvania and eastern New York (USA), when first exposed to no pesticide or sublethal concentrations and subsequently exposed to lethal concentrations of three common insecticides (carbaryl, chlorpyrifos, and diazinon). We found high variation in naïve tolerance among the populations for all three insecticides. We also discovered that nearly half of the populations exhibited inducible tolerance, though the degree of inducible tolerance (magnitude of tolerance plasticity; MoTP) varied. We observed a cross-tolerance pattern of the populations between chlorpyrifos and diazinon, but no pattern of similar MoTP among the pesticides. With populations combined from two regions, increased tolerance was not associated with proximity to agricultural fields, but there were correlations between proximity to agriculture and MoTP. Collectively, these results suggests that amphibian populations possess a wide range of naïve tolerance to common pesticides, with many also being able to rapidly induce increased tolerance. Future research should examine inducible tolerance in a wide variety of other taxa and contaminants to determine the ubiquity of these responses to anthropogenic factors.


Subject(s)
Carbaryl , Chlorpyrifos , Diazinon , Insecticides , Animals , Insecticides/toxicity , Chlorpyrifos/toxicity , Diazinon/toxicity , Carbaryl/toxicity , Water Pollutants, Chemical/toxicity , Larva/drug effects , Ranidae , Pennsylvania , New York , Drug Tolerance
3.
Article in English | MEDLINE | ID: mdl-38415079

ABSTRACT

Cultures from urinary catheters are often ordered without indication, leading to possible misdiagnosis of catheter-associated urinary tract infections (CAUTI), increasing antimicrobial use, and C difficile. We implemented a diagnostic stewardship intervention for urine cultures from catheters in a community hospital that led to a reduction in cultures and CAUTIs.

4.
Article in English | MEDLINE | ID: mdl-38311290

ABSTRACT

BACKGROUND: Sensory prediction allows the brain to anticipate and parse incoming self-generated sensory information from externally generated signals. Sensory prediction breakdowns may contribute to perceptual and agency abnormalities in psychosis (hallucinations, delusions). The pons, a central node in a cortico-ponto-cerebellar-thalamo-cortical circuit, is thought to support sensory prediction. Examination of pons connectivity in schizophrenia and its role in sensory prediction abnormalities is lacking. METHODS: We examined these relationships using resting-state functional magnetic resonance imaging and the electroencephalography-based auditory N1 event-related potential in 143 participants with psychotic spectrum disorders (PSPs) (with schizophrenia, schizoaffective disorder, or bipolar disorder); 63 first-degree relatives of individuals with psychosis; 45 people at clinical high risk for psychosis; and 124 unaffected comparison participants. This unique sample allowed examination across the psychosis spectrum and illness trajectory. Seeding from the pons, we extracted average connectivity values from thalamic and cerebellar clusters showing differences between PSPs and unaffected comparison participants. We predicted N1 amplitude attenuation during a vocalization task from pons connectivity and group membership. We correlated participant-level connectivity in PSPs and people at clinical high risk for psychosis with hallucination and delusion severity. RESULTS: Compared to unaffected comparison participants, PSPs showed pons hypoconnectivity to 2 cerebellar clusters, and first-degree relatives of individuals with psychosis showed hypoconnectivity to 1 of these clusters. Pons-to-cerebellum connectivity was positively correlated with N1 attenuation; only PSPs with heightened pons-to-postcentral gyrus connectivity showed this pattern, suggesting a possible compensatory mechanism. Pons-to-cerebellum hypoconnectivity was correlated with greater hallucination severity specifically among PSPs with schizophrenia. CONCLUSIONS: Deficient pons-to-cerebellum connectivity linked sensory prediction network breakdowns with perceptual abnormalities in schizophrenia. Findings highlight shared features and clinical heterogeneity across the psychosis spectrum.

6.
J Anim Ecol ; 92(11): 2151-2162, 2023 11.
Article in English | MEDLINE | ID: mdl-37587564

ABSTRACT

Hosts and parasites are embedded in communities where species richness and composition can influence disease outcomes (diversity-disease relationships). The direction and magnitude of diversity-disease relationships are influenced by variation in competence (ability to support and transmit infections) of hosts in a community. However, host susceptibility to parasites, which mediates host competence, is not static and is influenced by environmental factors, including pollutants. Despite the role that pollutants can play in augmenting host susceptibility, how pollutants influence diversity-disease dynamics is not well understood. Using an amphibian-trematode model, we tested how NaCl influences diversity-disease dynamics. We predicted that NaCl exposure can alter relative susceptibility of host species to trematodes, leading to cascading effects on the diversity-disease relationship. To test these predictions, we exposed hosts to benign or NaCl environments and generated communities that differed in number and composition of host species. We exposed these communities to trematodes and measured disease outcomes at the community (total infections across all hosts within a community) and species levels (average number of infections per host species within a community). Host species differed in their relative susceptibility to trematodes when exposed to NaCl. Consequently, at the community level (total infections across all hosts within a community), we only detected diversity-disease relationships (dilution effects) in communities where hosts were exposed to NaCl. At the species level, disease outcomes (average number of infections/species) and whether multi-species communities supported lower number of infections relative to single-species communities depended on community composition. Notably, however, as with overall community infection, diversity-disease relationships only emerged when hosts were exposed to NaCl. Synthesis. Pollutants are ubiquitous in nature and can influence disease dynamics across a number of host-parasite systems. Here, we show that NaCl exposure can alter the relative susceptibility of host species to parasites, influencing the relationship between biodiversity and disease at both community and species levels. Collectively, our study contributes to the limited knowledge surrounding environmental mediators of host susceptibility and their influence on diversity-disease dynamics.


Subject(s)
Parasites , Trematoda , Animals , Sodium Chloride , Biodiversity , Host-Parasite Interactions
7.
Aquat Toxicol ; 261: 106626, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37437313

ABSTRACT

Ecotoxicological studies using single test populations may miss the inherent variation of natural systems and limit our understanding of how contaminants affect focal species. Though population-level variation in pesticide tolerance is commonly observed in host taxa, few studies have assessed population-level differences in the tolerance of parasites to different contaminants. We investigated population-level variation in insecticide tolerance of three Echinostoma trivolvis life stages (egg, miracidium, and cercaria) to three insecticides (carbaryl, chlorpyrifos, and diazinon). We tested two relevant metrics of insecticide tolerance-baseline and induced-across up to eight different parasite populations per life stage. Across all life stages, the insecticide treatments tended to reduce survival, but the magnitude of their effects often varied significantly among populations. Surprisingly, we found that exposure to chlorpyrifos increased the hatching success of echinostome eggs relative to the control treatment in three of six tested populations. We also found that cercariae shed from snails previously exposed to a sublethal concentration of chlorpyrifos had a significantly lower mortality rate when subsequently exposed to a lethal concentration of chlorpyrifos relative to individuals from snails that were not previously exposed; this suggests inducible tolerance in cercariae. We found no evidence that insecticide tolerance is correlated across parasite life stages within a population. Together the findings of our study demonstrate that single-population toxicity assays may greatly over- or underestimate the effects of pesticides on the survival of free-living parasite stages, insecticide tolerance levels may not be predictable from one parasite life stage to the next, and insecticides can have both expected and counterintuitive effects on non-target taxa.


Subject(s)
Chlorpyrifos , Echinostoma , Insecticides , Pesticides , Water Pollutants, Chemical , Humans , Animals , Insecticides/toxicity , Chlorpyrifos/toxicity , Water Pollutants, Chemical/toxicity , Pesticides/pharmacology , Snails
8.
Environ Pollut ; 333: 122056, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37343910

ABSTRACT

Artificial light at night (ALAN) is a global pollutant of rising concern. While alterations to natural day-night cycles caused by ALAN can affect a variety of traits, the broader fitness and ecological implications of these ALAN-induced shifts remain unclear. This study evaluated the interactive effects of ALAN and background color on traits that have important implications for predator-prey interactions and fitness: crypsis, background adaptation efficacy, and growth. Using three amphibian species as our models, we discovered that: (1) Exposure to ALAN reduced the ability for some species to match their backgrounds (background adaptation efficacy), (2) Crypsis and background adaptation efficacy were enhanced when tadpoles were exposed to dark backgrounds only, emphasizing the importance of environmental context when evaluating the effects of ALAN, (3) ALAN and background color have a combined effect on a common metric of fitness (growth), and (4) Effects of ALAN were not generalizable across amphibian species, supporting calls for more studies that utilize a diversity of species. Notably, to our knowledge, we found the first evidence that ALAN can diminish background adaptation efficacy in an amphibian species (American toad tadpoles). Collectively, our study joins others in highlighting the complex effects of ALAN on wildlife and underscores the challenges of generalizing ALAN's effect across species, emphasizing the need for a greater diversity of species and approaches used in ALAN research.


Subject(s)
Light Pollution , Light , Animals , Larva , Bufonidae , Animals, Wild
9.
Skin Health Dis ; 3(2): e123, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37013122

ABSTRACT

Background: Basal cell carcinoma (BCC) is one of the most common malignancies in the world. The frequency of histopathological subtypes and the distribution on the body of BCC has been well documented. Less has been written on the nature of secondary tumours. The genetics of BCC is starting to be understood, particularly with the advent of newer medical treatments (hedgehog inhibitors). Objectives: To determine if primary basal cell carcinoma histopathological subtype predicts secondary tumour subtype, as well as their anatomical distribution. Methods: A retrospective case series of patients over the age of 18 was performed from 2009 to 2014, with at least two separate diagnoses of BCC. Results: In 394 identified patients, a total of 1355 BCCs arose in the cohort over the 6-year study period. The number of secondary BCCs per patient ranged from 2 to 19 tumours. Nodular BCC was the most likely to reoccur in secondary tumours (53.3%), followed by mixed subtypes (45.7%). Conclusions: Within our study, we did find a predisposition for secondary BCCs to be of the same histopathological subtype as the primary, particularly with respect to nodular and mixed tumours. Furthermore, we found that secondary tumours were also more likely to occur on the same anatomical site as the primary tumour. We are only just beginning to under the genetic mutations involved in subtype formation.

10.
Psychiatry Res Neuroimaging ; 332: 111653, 2023 07.
Article in English | MEDLINE | ID: mdl-37121090

ABSTRACT

Neuroimaging studies have documented morphometric brain abnormalities in schizophrenia, but less is known about them in individuals at clinical high-risk for psychosis (CHR-P), including how they compare with those observed in early schizophrenia (ESZ). Accordingly, we implemented multivariate profile analysis of regional morphometric profiles in CHR-P (n = 89), ESZ (n = 93) and healthy controls (HC; n = 122). ESZ profiles differed from HC and CHR-P profiles, including 1) cortical thickness: significant level reduction and regional non-parallelism reflecting widespread thinning, except for entorhinal and pericalcarine cortex, 2) basal ganglia volume: significant level increase and regional non-parallelism reflecting larger caudate and pallidum, and 3) ventricular volume: significant level increase with parallel regional profiles. CHR-P and ESZ cerebellar profiles showed significant non-parallelism with HC profiles. Regional profiles did not significantly differ between groups for cortical surface area or subcortical volume. Compared to CHR-P followed for ≥18 months without psychosis conversion (n = 31), CHR-P converters (n = 17) showed significant non-parallel ventricular volume expansion reflecting specific enlargement of lateral and inferolateral regions. Antipsychotic dosage in ESZ was significantly correlated with frontal cortical thinning. Results suggest that morphometric abnormalities in ESZ are not present in CHR-P, except for ventricular enlargement, which was evident in CHR-P who developed psychosis.


Subject(s)
Brain Diseases , Nervous System Malformations , Psychotic Disorders , Schizophrenia , Adolescent , Humans , Schizophrenia/diagnostic imaging , Psychotic Disorders/diagnostic imaging , Basal Ganglia
11.
J Microbiol Biol Educ ; 24(1)2023 Apr.
Article in English | MEDLINE | ID: mdl-37089231

ABSTRACT

Art is a common approach for communicating and educating about science, yet it remains unclear the extent to which science art can benefit varied audiences in varied contexts. To examine this gap, we developed an art exhibit based on the findings of two publications in disease ecology. In study 1, we asked visitors with varying formal science, technology, engineering, and math (STEM) education backgrounds to complete a survey about their interest in science research before and after viewing the exhibit. In study 2, we recruited upper-level ecology undergraduate students to receive one of three treatments: engage with the art exhibit, read the abstracts of the papers, or do neither. Students completed a comprehension quiz immediately after their learning treatment and again 2 weeks later to evaluate retention. Following the exhibit, visitors who did not report a career or major in STEM showed a greater increase in research interest than visitors who did report a career or major in STEM. For the ecology undergraduate students, comprehension quiz scores were higher for students in the abstract group than the art exhibit group, while both groups scored higher than the control group. Retention of information did not significantly differ between the three groups. Overall, these findings suggest that science art exhibits are an effective method for increasing the accessibility of science to broader audiences and that audience identifiers (e.g., level of formal education in STEM) play an important role in audience experience of science communication and science education initiatives.

12.
Article in English | MEDLINE | ID: mdl-36931469

ABSTRACT

BACKGROUND: Amplitude reduction of mismatch negativity (MMN), an event-related potential component indexing NMDA receptor-dependent auditory echoic memory and predictive coding, is widely replicated in schizophrenia. Time-frequency analyses of single-trial electroencephalography epochs suggest that theta oscillation abnormalities underlie MMN deficits in schizophrenia. However, this has received less attention in early schizophrenia (ESZ). METHODS: Patients with ESZ (n = 89), within 5 years of illness onset, and healthy control subjects (n = 105) completed an electroencephalography MMN paradigm (duration-deviant, pitch-deviant, duration + pitch double-deviant). Repeated measures analyses of variance assessed group differences in MMN, theta intertrial phase coherence (ITC), and theta total power from frontocentral electrodes, after normal age adjustment. Group differences were retested after covarying MMN and theta measures. RESULTS: Relative to healthy control subjects, patients with ESZ showed auditory deviance deficits. Patients with ESZ had MMN deficits for duration-deviants (p = .041), pitch-deviants (ps = .007), and double-deviants (ps < .047). Patients with ESZ had reduced theta ITC for standards (ps < .040) and duration-deviants (ps < .030). Furthermore, patients with ESZ had reduced theta power across deviants at central electrodes (p = .013). MMN group deficits were not fully accounted for by theta ITC and power, and neither were theta ITC group deficits fully accounted for by MMN. Group differences in theta total power were no longer significant after covarying for MMN. CONCLUSIONS: Patients with ESZ showed reduced MMN and theta total power for all deviant types. Theta ITC showed a relatively specific reduction for duration-deviants. Although MMN and theta ITC were correlated in ESZ, covarying for one did not fully account for deficits in the other, raising the possibility of their sensitivity to dissociable pathophysiological processes.


Subject(s)
Schizophrenia , Humans , Evoked Potentials, Auditory/physiology , Acoustic Stimulation , Evoked Potentials , Electroencephalography
13.
Schizophr Res ; 255: 110-121, 2023 05.
Article in English | MEDLINE | ID: mdl-36989668

ABSTRACT

Brain dysconnectivity has been posited as a biological marker of schizophrenia. Emerging schizophrenia connectome research has focused on rich-club organization, a tendency for brain hubs to be highly-interconnected but disproportionately vulnerable to dysconnectivity. However, less is known about rich-club organization in individuals at clinical high-risk for psychosis (CHR-P) and how it compares with abnormalities early in schizophrenia (ESZ). Combining diffusion tensor imaging (DTI) and magnetic resonance imaging (MRI), we examined rich-club and global network organization in CHR-P (n = 41) and ESZ (n = 70) relative to healthy controls (HC; n = 74) after accounting for normal aging. To characterize rich-club regions, we examined rich-club MRI morphometry (thickness, surface area). We also examined connectome metric associations with symptom severity, antipsychotic dosage, and in CHR-P specifically, transition to a full-blown psychotic disorder. ESZ had fewer connections among rich-club regions (ps < .024) relative to HC and CHR-P, with this reduction specific to the rich-club even after accounting for other connections in ESZ relative to HC (ps < .048). There was also cortical thinning of rich-club regions in ESZ (ps < .013). In contrast, there was no strong evidence of global network organization differences among the three groups. Although connectome abnormalities were not present in CHR-P overall, CHR-P converters to psychosis (n = 9) had fewer connections among rich-club regions (ps < .037) and greater modularity (ps < .037) compared to CHR-P non-converters (n = 19). Lastly, symptom severity and antipsychotic dosage were not significantly associated with connectome metrics (ps < .012). Findings suggest that rich-club and connectome organization abnormalities are present early in schizophrenia and in CHR-P individuals who subsequently transition to psychosis.


Subject(s)
Antipsychotic Agents , Connectome , Psychotic Disorders , Schizophrenia , Humans , Adolescent , Schizophrenia/diagnostic imaging , Schizophrenia/complications , Connectome/methods , Diffusion Tensor Imaging/methods , Psychotic Disorders/diagnostic imaging , Psychotic Disorders/drug therapy , Psychotic Disorders/complications , Brain/diagnostic imaging , Magnetic Resonance Imaging , Neural Pathways/diagnostic imaging
14.
FEMS Microbiol Rev ; 47(1)2023 01 16.
Article in English | MEDLINE | ID: mdl-36725211

ABSTRACT

This review summarizes the role of environmental factors on amphibian microbiotas at the organismal, population, community, ecosystem, and biosphere levels. At the organismal-level, tissue source, disease status, and experimental manipulations were the strongest predictors of variation in amphibian microbiotas. At the population-level, habitat quality, disease status, and ancestry were commonly documented as drivers of microbiota turnover. At the community-level, studies focused on how species' niche influence microbiota structure and function. At the ecosystem-level, abiotic and biotic reservoirs were important contributors to microbiota structure. At the biosphere-level, databases, sample banks, and seminatural experiments were commonly used to describe microbiota assembly mechanisms among temperate and tropical amphibians. Collectively, our review demonstrates that environmental factors can influence microbiotas through diverse mechanisms at all biological scales. Importantly, while environmental mechanisms occurring at each of the different scales can interact to shape microbiotas, the past 10 years of research have mostly been characterized by targeted approaches at individual scales. Looking forward, efforts considering how environmental factors at multiple organizational levels interact to shape microbiota diversity and function are paramount. Generating opportunities for meaningful cross-disciplinary interactions and supporting infrastructure for research that spans biological scales are imperative to addressing this gap.


Subject(s)
Ecosystem , Microbiota , Animals , Amphibians , Phylogeny
15.
Heliyon ; 9(1): e12805, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36685386

ABSTRACT

Freshwater ecosystems face numerous threats from human populations, including heavy metal contamination. Phytoremediation, the use of plants to remediate contaminated soils and sediments, is an effective and low-cost means of removing chemical contaminants, including heavy metals, from polluted environments. However, key questions remain unanswered in the application of this technology in aquatic environments, such as the long-term fate of pollutants following plant uptake. In this study, using two common wetland plant species (duckweed and tape grass), we first examined the capacity of plants to remove copper (Cu) from polluted water. Next, we evaluated the leaching potential of plant tissues following decomposition and how it is affected by a simulated freeze-thaw cycle. Using phytoremediated water and leachates from senesced plants we assessed phytoremediation success and Cu leaching potential by conducting standard toxicity assays using pond snails (Physa acuta), a species with known Cu sensitivity. We found that duckweed outperformed tape grass as a phytoremediator at low Cu concentrations. In addition, for plants grown in low concentrations of Cu, leaching from decaying plant material did not negatively impact snail survival, while at high concentrations of Cu, leaching did result in toxicity. Lastly, we found that a simulated freeze-thaw cycle increased the release of Cu from plant tissue in the presence of high Cu concentrations only, resulting in reduced snail survival. Our results indicate that in moderately Cu-polluted environments, some aquatic plants can remove contaminants without a long-term risk of leaching. In contrast, phytoremediation in highly polluted environments will likely require removal of plant tissue to prevent leaching of previously accumulated metals. Land managers must not only consider plant species and degree of contamination, but also geographic location, as freeze-thaw cycles may enhance plant decomposition and increase the likelihood of contaminant leaching following phytoremediation efforts in aquatic ecosystems.

16.
Neuroimage Clin ; 37: 103301, 2023.
Article in English | MEDLINE | ID: mdl-36586360

ABSTRACT

BACKGROUND: Individual variation in brain aging trajectories is linked with several physical and mental health outcomes. Greater stress levels, worry, and rumination correspond with advanced brain age, while other individual characteristics, like mindfulness, may be protective of brain health. Multiple lines of evidence point to advanced brain aging in schizophrenia (i.e., neural age estimate > chronological age). Whether psychological dimensions such as mindfulness, rumination, and perceived stress contribute to brain aging in schizophrenia is unknown. METHODS: We estimated brain age from high-resolution anatomical scans in 54 healthy controls (HC) and 52 individuals with schizophrenia (SZ) and computed the brain predicted age difference (BrainAGE-diff), i.e., the delta between estimated brain age and chronological age. Emotional well-being summary scores were empirically derived to reflect individual differences in trait mindfulness, rumination, and perceived stress. Core analyses evaluated relationships between BrainAGE-diff and emotional well-being, testing for slopes differences across groups. RESULTS: HC showed higher emotional well-being (greater mindfulness and less rumination/stress), relative to SZ. We observed a significant group difference in the relationship between BrainAge-diff and emotional well-being, explained by BrainAGE-diff negatively correlating with emotional well-being scores in SZ, and not in HC. That is, SZ with younger appearing brains (predicted age < chronological age) had emotional summary scores that were more like HC, a relationship that endured after accounting for several demographic and clinical variables. CONCLUSIONS: These data reveal clinically relevant aspects of brain age heterogeneity among SZ and point to case-control differences in the relationship between advanced brain aging and emotional well-being.


Subject(s)
Mindfulness , Schizophrenia , Humans , Schizophrenia/diagnostic imaging , Brain/diagnostic imaging , Aging , Emotions
17.
Micromachines (Basel) ; 13(10)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36295926

ABSTRACT

The PDMS-based microfluidic organ-on-chip platform represents an exciting paradigm that has enjoyed a rapid rise in popularity and adoption. A particularly promising element of this platform is its amenability to rapid manufacturing strategies, which can enable quick adaptations through iterative prototyping. These strategies, however, come with challenges; fluid flow, for example, a core principle of organs-on-chip and the physiology they aim to model, necessitates robust, leak-free channels for potentially long (multi-week) culture durations. In this report, we describe microfluidic chip fabrication methods and strategies that are aimed at overcoming these difficulties; we employ a subset of these strategies to a blood-brain-barrier-on-chip, with others applied to a small-airway-on-chip. Design approaches are detailed with considerations presented for readers. Results pertaining to fabrication parameters we aimed to improve (e.g., the thickness uniformity of molded PDMS), as well as illustrative results pertaining to the establishment of cell cultures using these methods will also be presented.

18.
Mil Med ; 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36179109

ABSTRACT

INTRODUCTION: Alcohol use disorder (AUD) and PTSD have high rates of co-occurrence in U.S. Military Veterans resulting in incrementally worse functional outcomes relative to having either one of these disorders alone. Cognitive dysfunction can impede one's ability to benefit from standard behavioral AUD and PTSD treatments. Cigarette smoking is also highly prevalent among U.S. Military Veterans, and cognitive dysfunction is associated with chronic cigarette use among individuals with AUD and PTSD independently. However, much less is known about to what extent cigarette smoking further impairs cognitive functioning in individuals with both co-occurring AUD and PTSD. MATERIALS AND METHODS: U.S. Veterans with co-occurring AUD and PTSD (n = 162) completed a comprehensive cognitive assessment covering various domains: working memory, processing speed, mental switching, cognitive inhibition, auditory-verbal learning, auditory-verbal memory, and verbal fluency. To examine the impact of alcohol use, traumatic stress, and cigarette smoking on cognitive function, we conducted a three-way interaction examining the moderated effects of smoking status on the association between alcohol use and PTSD symptoms on a composite domain of global cognition. RESULTS: Smoking status in Veterans with co-occurring AUD and PTSD moderated the relationship between alcohol use and global cognition (P = .042), such that higher levels of alcohol use in the past week were related to worse global cognitive function among Veterans cigarette smokers (P = .015) but not among nonsmokers (P = .833). On follow-up analyses of individual cognitive domains, greater alcohol use in the past week was associated with lower cognitive inhibition in smokers but not nonsmokers, with traumatic stress symptoms moderating this effect (P = .039). Additionally, smoking status moderated the relationship between alcohol use and auditory-verbal learning, such that there was a differential relationship between alcohol use and auditory-verbal learning between smokers and nonsmokers. CONCLUSIONS: Overall, results provide evidence for the compounding impact of alcohol use, traumatic stress, and cigarette smoking on cognitive functioning. Impaired cognitive performance on a global level as well as on individual domains of cognitive inhibition and auditory-verbal learning were evident. Cognitive dysfunction may impede a Veteran's ability to benefit from therapeutic treatment, and these cognitive domains may represent potential targets for cognitive training efforts. Further, study results support smoking cessation initiatives and smoke-free policies enacted at Veterans Affairs healthcare facilities and medical centers.

19.
Cogn Neuropsychiatry ; 27(6): 458-470, 2022 11.
Article in English | MEDLINE | ID: mdl-36166749

ABSTRACT

Introduction: Social anhedonia (SocAnh) predicts increased risk of schizophrenia-spectrum disorders, with evidence that these disorders are associated with increased creativity. However, it is still largely unknown whether SocAnh is associated with one central aspect of creative thinking, convergent thinking.Methods: In two studies, college students with either extreme levels of SocAnh (n = 44 and n = 70) or controls with an average level of SocAnh (n = 111 and n = 100) completed a convergent thinking task, the Remote Associates Test, and also completed measures of current affect. In the second study, participants also completed a divergent thinking task.Results: In both studies, the SocAnh group had better performance than controls on the convergent thinking task. Further, this group difference remained after removing shared variance with current affect. In Study 2, groups did not differ on divergent thinking.Conclusions: Overall, consistent with research linking schizophrenia-spectrum disorders and creativity, the current research suggests that SocAnh is associated with increases in some aspects of creativity.


Subject(s)
Anhedonia , Creativity , Humans , Students
20.
Trends Neurosci ; 45(11): 798-808, 2022 11.
Article in English | MEDLINE | ID: mdl-36123224

ABSTRACT

A shared mechanism across species heralds the arrival of self-generated sensations, helping the brain to anticipate, and therefore distinguish, self-generated from externally generated sensations. In mammals, this sensory prediction mechanism is supported by communication within a cortico-ponto-cerebellar-thalamo-cortical loop. Schizophrenia is associated with impaired sensory prediction as well as abnormal structural and functional connections between nodes in this circuit. Despite the pons' principal role in relaying and processing sensory information passed from the cortex to cerebellum, few studies have examined pons connectivity in schizophrenia. Here, we first briefly describe how the pons contributes to sensory prediction. We then summarize schizophrenia-related abnormalities in the cortico-ponto-cerebellar-thalamo-cortical loop, emphasizing the dearth of research on the pons relative to thalamic and cerebellar connections. We conclude with recommendations for advancing our understanding of how the pons relates to sensory prediction failures in schizophrenia.


Subject(s)
Schizophrenia , Humans , Thalamus , Cerebral Cortex , Pons , Cerebellum , Magnetic Resonance Imaging , Neural Pathways
SELECTION OF CITATIONS
SEARCH DETAIL
...