Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 18(23): 15312-15325, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38809601

ABSTRACT

The exceptional biocompatibility and adaptability of hydrogels have garnered significant interest in the biomedical field for the fabrication of biomedical devices. However, conventional synthetic hydrogels still exhibit relatively weak and fragile properties. Drawing inspiration from the photosynthesis process, we developed a facile approach to achieve a harmonious combination of superior mechanical properties and efficient preparation of silk fibroin hydrogel through photo-cross-linking technology, accomplished within 60 s. The utilization of riboflavin and H2O2 enabled a sustainable cyclic photo-cross-linking reaction, facilitating the transformation from tyrosine to dityrosine and ultimately contributing to the formation of highly cross-linked hydrogels. These photo-cross-linking hydrogels exhibited excellent elasticity and restorability even after undergoing 1000 cycles of compression. Importantly, our findings presented that hydrogel-encapsulated adipose stem cells possess the ability to stimulate cell proliferation along with stem cell stemness. This was evidenced by the continuous high expression levels of OCT4 and SOX2 over 21 days. Additionally, the utilization of photo-cross-linking hydrogels can be extended to various material molding platforms, including microneedles, microcarriers, and bone screws. Consequently, this study offered a significant approach to fabricating biomedical hydrogels capable of facilitating real-time cell delivery, thereby introducing an innovative avenue for designing silk devices with exceptional machinability and adaptability in biomedical applications.


Subject(s)
Cell Proliferation , Hydrogels , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/chemical synthesis , Cell Proliferation/drug effects , Fibroins/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Animals , Cross-Linking Reagents/chemistry , Silk/chemistry , Photochemical Processes , Stem Cells/cytology , Stem Cells/metabolism , Stem Cells/drug effects , Riboflavin/chemistry , Riboflavin/pharmacology , Bombyx , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/pharmacology , Humans
2.
Int J Biol Macromol ; 267(Pt 2): 131519, 2024 May.
Article in English | MEDLINE | ID: mdl-38608985

ABSTRACT

Hydrogel has attracted tremendous attentions due to its excellent biocompatibility and adaptability in biomedical field. However, it is challenging by the conflicts between inadequate mechanical properties and service requirements. Herein, a rapid and robust hydrogel was developed by interpenetrating networks between chitosan and silk fibroin macromolecules. Thanks to these unique networks, the chitosan-based hydrogel exhibited superior mechanical performances. The maximum breaking strength, Young's modulus and swelling ratio of the hydrogel were 1187.8 kPa, 383.1 MPa and 4.5 % respectively. The hydrogel also supported the proliferation of human umbilical vein endothelial cells for 7 days. Notably, the hydrogel was easily molded into bone screw, and demonstrated compressive strengths of 45.7 MPa, Young's modulus of 675.6 MPa, respectively. After 49-day biodegradation, the residual rate of the screw in collagenase I solution was up to 89.6 % of the initial weight. In vitro, the screws not only had high resistance to biodegradation, but also had outstanding biocompatibility of osteoblast. This study provided a promising physical-chemical double crosslinking strategy to build orthopedic materials, holding a great potential in biomedical devices.


Subject(s)
Biocompatible Materials , Bone Screws , Chitosan , Fibroins , Human Umbilical Vein Endothelial Cells , Materials Testing , Chitosan/chemistry , Chitosan/pharmacology , Fibroins/chemistry , Humans , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Hydrogels/chemistry , Cell Proliferation/drug effects , Osteoblasts/drug effects , Osteoblasts/cytology , Compressive Strength , Elastic Modulus
3.
Polymers (Basel) ; 15(22)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38006143

ABSTRACT

Silk fibroin (SF) hydrogels have garnered extensive attention in biomedical materials, owing to their superior biological properties. However, the challenges facing the targeted silk fibroin hydrogels involve chemical agents and shortfalls in performance. In this study, the silk fibroin hydrogels were prepared in different ways: sonication induction, chemical crosslinking, photopolymerization, and enzyme-catalyzed crosslinking. The SF hydrogels derived from photopolymerization exhibited higher compressive properties, with 124 Kpa fracture compressive stress and breaks at about 46% compression. The chemical crosslinking and enzyme-catalyzed silk fibroin hydrogels showed superior toughness, yet sonication-induced hydrogels showed brittle performance resulting from an increase in silk II crystals. The chemical-crosslinked hydrogel demonstrated lower thermostability due to the weaker crosslinking degree. In vitro, all silk fibroin hydrogels supported the growth of human umbilical vein endothelial cells, as the cell viability of hydrogels without chemical agents was relatively higher. This study provides insights into the formation process of silk fibroin hydrogels and optimizes their design strategy for biomedical applications.

4.
Adv Sci (Weinh) ; 6(8): 1802012, 2019 Apr 17.
Article in English | MEDLINE | ID: mdl-31016114

ABSTRACT

Checkpoint blockade immunotherapy has demonstrated significant clinical success in various malignant tumors. However, the therapeutic response is limited due to the immunosuppressive tumor microenvironment (ITM). In this study, a functional nanomaterial, layered double hydroxides (LDHs), carrying specific functional miR155 is developed to modulate ITM by synergistically repolarizing tumor associated macrophages (TAMs) to M1 subtype. LDH nanoparticles loaded with miR155 (LDH@155) exhibit superior ability in cellular uptake by murine macrophages, miR escape into the cytoplasm and TAMs specific delivery when introtumoral administration. Meanwhile, upon exposure to LDH@155, TAMs are significantly skewed to M1 subtype, which markedly inhibits myeloid-derived suppressor cells (MDSCs) formation and stimulates T-lymphocytes to secrete more interferon-γ (IFN-γ) cytokines in vitro. Introtumoral administration of LDH@155 reduces the percentage of TAMs and MDSCs in the tumor and elevates CD4+ and CD8+ T cell infiltration and activation, which can promote therapeutic efficiency of α-PD-1 antibody immunotherapy. Furthermore, it is found that LDH@155 significantly decreases the expression level of phosphorylated STAT3 and ERK1/2 and activates NF-κB expression in TAMs, indicating that the STAT3, ERK1/2, and NF-κB signaling pathways may involve in LDH@155-induced macrophage polarization. Overall, the results suggest that LDH@155 nanoparticles may, in the future, function as a promising agent for cancer combinational immunotherapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...