Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 992
Filter
2.
Heliyon ; 10(9): e30668, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38774097

ABSTRACT

Objective: To analyse and continually improve existing issues in the quality improvement process of medical linear accelerators (LINACs) and enhance the quality control management of LINACs. Methods: Data were collected from eight LINACs (sourced from three manufacturers) at Zhejiang Cancer Hospital using Excel diaries between January 2019 and December 2020. The data description and analysis were performed using the analytic hierarchy process, SPSSAU and Excel software, and mean-time-to-repair (MTTR)/mean-time-between-failure (MTBF) metrics. Continuous quality improvement was executed using the quality control circle (QCC) quality management method. Results: After quality improvement, the risk frequency of 'LINAC down' events decreased by 43.63% and downtime was reduced by 40.45%. The weight of downtime risk improved by 73.69%. The MTTR recovery value increased by 31.90%, and MTBF reliability increased by 2.97 h. The simulation results demonstrated that the proposed quality improvement measures could effectively decrease the frequency and duration of downtimes, consequently extending the normal operational time of LINACs. Conclusion: Transitioning from instant repair to preventative maintenance can enhance the operational efficiency of equipment and yield economic benefits for hospitals. The QCC method and the event risk evaluation model are effective in reducing the downtime of LINACs and improving their quality control management.

3.
Cancer Med ; 13(9): e7231, 2024 May.
Article in English | MEDLINE | ID: mdl-38698697

ABSTRACT

OBJECTIVE: To create a nomogram for predicting the likelihood of venous thromboembolism (VTE) in colon cancer patients from China. METHODS: The data of colon cancer patients from Chongqing University Cancer Hospital between 2019 and 2022 were analyzed. Patients were divided into training set and internal validation set by random split-sample method in a split ratio of 7:3. The univariable and multivariable logistic analysis gradually identified the independent risk factors for VTE. A nomogram was created using all the variables that had a significance level of p < 0.05 in the multivariable logistic analysis and those with clinical significance. Calibration curves and clinical decision curve analysis (DCA) were used to assess model's fitting performance and clinical value. Harrell's C-index (concordance statistic) and the area under the receiver operating characteristic curves (AUC) were used to evaluate the predictive effectiveness of models. RESULTS: A total of 1996 patients were ultimately included. There were 1398 patients in the training set and 598 patients in the internal validation set. The nomogram included age, chemotherapy, targeted therapy, hypertension, activated partial thromboplastin time, prothrombin time, platelet, absolute lymphocyte count, and D-dimer. The C-index of nomogram and Khorana score were 0.754 (95% CI 0.711-0.798), 0.520 (95% CI 0.477-0.563) in the training cohort and 0.713 (95% CI 0.643-0.784), 0.542 (95% CI 0.473-0.612) in the internal validation cohort. CONCLUSIONS: We have established and validated a nomogram to predict the VTE risk of colon cancer patients in China, which encompasses a diverse age range, a significant population size, and various clinical factors. It facilitates the identification of high-risk groups and may enable the implementation of targeted preventive measures.


Subject(s)
Colonic Neoplasms , Nomograms , Venous Thromboembolism , Humans , Venous Thromboembolism/etiology , Venous Thromboembolism/epidemiology , Male , Female , Colonic Neoplasms/complications , Colonic Neoplasms/epidemiology , China/epidemiology , Middle Aged , Risk Factors , Aged , Risk Assessment/methods , ROC Curve , Retrospective Studies , Adult
5.
Clin Case Rep ; 12(6): e8866, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38799516

ABSTRACT

Key Clinical Message: One Kirsten Ras (KRAS) G12C mutated non-small cell lung cancer (NSCLC) patient had improved poor performance status and obtained mixed response with the first-line KRAS-targeted treatment of sotorasib. After disease progression, partial response was achieved with chemotherapy plus immunotherapy. KRAS G12C mutated immunoenvironment in NSCLC may favor the immunotherapy. Abstract: KRAS is one of the most commonly mutated genes, which used to be untargetable. The phase II CodeBreak 100 trial revealed 6.8-month median progress-free survival (PFS) and 12.5-month overall survival (OS) in previously treated KRAS G12C-mutant NSCLC patients treated with KRAS inhibitor, sotorasib. The specimens of the brain, lymph node (LN), and blood from the patient were analyzed by next-generation sequencing. Hematoxylin and eosin staining and immunohistochemistry were performed for pathological characterization. Computed tomography (CT) and magnetic resonance imaging (MRI) scan were used for treatment response evaluation. The patient was diagnosed in a bad Eastern Cooperative Oncology Group performance status (ECOG-PS) with metastatic KRAS G12C-mutated lung adenocarcinoma who had achieved mixed response to sotorasib as the first-line treatment. Although 5-month PFS of the treatment with sotorasib was not surprising, the patient achieved significantly improved ECOG-PS score from 4 to 1. Subsequently, partial response (PR) was achieved with the treatment of pemetrexed plus pembrolizumab. This case highlights superior efficacy of first-line treatment with sotorasib for the advance untreated KRAS G12C-mutant patients. The high efficacy of the treatment with chemotherapy plus immunotherapy revealed that immunoenvironment of KRAS G12C-mutated patient may favor the immunotherapy.

6.
Comput Biol Med ; 176: 108620, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38761500

ABSTRACT

Predicting three-dimensional (3D) protein structures has been challenging for decades. The emergence of AlphaFold2 (AF2), a deep learning-based machine learning method developed by DeepMind, became a game changer in the protein folding community. AF2 can predict a protein's three-dimensional structure with high confidence based on its amino acid sequence. Accurate prediction of protein structures can dramatically accelerate our understanding of biological mechanisms and provide a solid foundation for reliable drug design. Although AF2 breaks through the barriers in predicting protein structures, many rooms remain to be further studied. This review provides a brief historical overview of the development of protein structure prediction, covering template-based, template-free, and machine learning-based methods. In addition to reviewing the potential benefits (Pros) and considerations (Cons) of using AF2, this review summarizes the diverse applications, including protein structure predictions, dynamic changes, point mutation, integration of language model and experimental data, protein complex, and protein-peptide interaction. It underscores recent advancements in efficiency, reliability, and broad application of AF2. This comprehensive review offers valuable insights into the applications of AF2 and AF2-inspired AI methods in structural biology and its potential for clinically significant drug target discovery.

7.
Life Sci ; 347: 122662, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38670450

ABSTRACT

AIMS: PI3Kδ is expressed predominately in leukocytes and is commonly found to be aberrantly activated in human B-cell lymphomas. Although PI3Kδ has been intensively targeted for discovering anti-lymphoma drugs, the application of currently approved PI3Kδ inhibitors has been limited due to unwanted systemic toxicities, thus warranting the development of novel PI3Kδ inhibitors with new scaffolds. MAIN METHODS: We designed TYM-3-98, an indazole derivative, and evaluated its selectivity for all four PI3K isoforms, as well as its efficacy against various B-cell lymphomas both in vitro and in vivo. KEY FINDINGS: We identified TYM-3-98 as a highly selective PI3Kδ inhibitor over other PI3K isoforms at both molecular and cellular levels. It showed superior antiproliferative activity in several B-lymphoma cell lines compared with the approved first-generation PI3Kδ inhibitor idelalisib. TYM-3-98 demonstrated a concentration-dependent PI3K/AKT/mTOR signaling blockage followed by apoptosis induction. In vivo, TYM-3-98 showed good pharmaceutical properties and remarkably reduced tumor growth in a human lymphoma xenograft model and a mouse lymphoma model. SIGNIFICANCE: Our findings establish TYM-3-98 as a promising PI3Kδ inhibitor for the treatment of B-cell lymphoma.


Subject(s)
Antineoplastic Agents , Class I Phosphatidylinositol 3-Kinases , Lymphoma, B-Cell , Phosphoinositide-3 Kinase Inhibitors , Xenograft Model Antitumor Assays , Humans , Animals , Lymphoma, B-Cell/drug therapy , Lymphoma, B-Cell/pathology , Mice , Antineoplastic Agents/pharmacology , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Class I Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Indazoles/pharmacology , Indazoles/therapeutic use , Apoptosis/drug effects , Cell Proliferation/drug effects , Female , Signal Transduction/drug effects , Mice, Nude
8.
Bioresour Technol ; 401: 130688, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604298

ABSTRACT

Nitrate is a common contaminant in high-salinity wastewater, which has adverse effects on both the environment and human health. However, conventional biological treatment exhibits poor denitrification performance due to the high-salinity shock. In this study, an innovative approach using an electrostimulating microbial reactor (EMR) was explored to address this challenge. With a low-voltage input of 1.2 V, the EMR reached nitrate removal kinetic parameter (kNO3-N) of 0.0166-0.0808 h-1 under high-salinities (1.5 %-6.5 %), which was higher than that of the microbial reactor (MR) (0.0125-0.0478 h-1). The mechanisms analysis revealed that low-voltage significantly enhanced microbial salt-in strategy and promoted the secretion of extracellular polymeric substances. Halotolerant denitrification microorganisms (Pseudomonas and Nitratireductor) were also enriched in EMR. Moreover, the EMR achieved a NO3-N removal efficiency of 73.64 % in treating high-salinity wastewater (salinity 4.69 %) over 18-cycles, whereas the MR only reached 54.67 %. In summary, this study offers an innovative solution for denitrification of high-salinity wastewater.


Subject(s)
Bioreactors , Denitrification , Nitrates , Salinity , Wastewater , Wastewater/chemistry , Nitrates/metabolism , Water Purification/methods , Electricity , Pseudomonas/metabolism
9.
Appl Environ Microbiol ; 90(5): e0004624, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38563787

ABSTRACT

Dietary fiber metabolism by gut microorganisms plays important roles in host physiology and health. Alginate, the major dietary fiber of daily diet seaweeds, is drawing more attention because of multiple biological activities. To advance the understanding of alginate assimilation mechanism in the gut, we show the presence of unsaturated alginate oligosaccharides (uAOS)-specific alginate utilization loci (AUL) in human gut microbiome. As a representative example, a working model of the AUL from the gut microorganism Bacteroides clarus was reconstructed from biochemistry and transcriptome data. The fermentation of resulting monosaccharides through Entner-Doudoroff pathway tunes the metabolism of short-chain fatty acids and amino acids. Furthermore, we show that uAOS feeding protects the mice against dextran sulfate sodium-induced acute colitis probably by remodeling gut microbiota and metabolome. IMPORTANCE: Alginate has been included in traditional Chinese medicine and daily diet for centuries. Recently discovered biological activities suggested that alginate-derived alginate oligosaccharides (AOS) might be an active ingredient in traditional Chinese medicine, but how these AOS are metabolized in the gut and how it affects health need more information. The study on the working mechanism of alginate utilization loci (AUL) by the gut microorganism uncovers the role of unsaturated alginate oligosaccharides (uAOS) assimilation in tuning short-chain fatty acids and amino acids metabolism and demonstrates that uAOS metabolism by gut microorganisms results in a variation of cell metabolites, which potentially contributes to the physiology and health of gut.


Subject(s)
Alginates , Gastrointestinal Microbiome , Oligosaccharides , Alginates/metabolism , Oligosaccharides/metabolism , Mice , Animals , Humans , Colitis/microbiology , Colitis/chemically induced , Mice, Inbred C57BL , Fatty Acids, Volatile/metabolism , Inflammation/metabolism , Dextran Sulfate , Dietary Fiber/metabolism
10.
Exp Gerontol ; 190: 112432, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38614224

ABSTRACT

The beneficial effect of social interaction in mitigating the incidence of post-stroke depression (PSD) and ameliorating depressive symptoms has been consistently demonstrated through preclinical and clinical studies. However, the underlying relationship with oxytocin requires further investigation. In light of this, the present study aimed to explore the protective effect of pair housing on the development of PSD and the potential relationship with oxytocin receptors. The PSD model was induced by middle cerebral artery occlusion (MCAO) for 50 min, followed by 4-week isolated housing and restrained stress. Subsequently, each mouse in the pair-housing group (PH) was pair-housed with an isosexual healthy partner. Another group was continuously administrated fluoxetine (10 mg/Kg, i.p, once a day) for 3 weeks. To elucidate the potential role of oxytocin, we subjected pair-housed PSD mice to treatment with an oxytocin receptor (OXTR) antagonist (L368,889) (5 mg/Kg, i.p, once a day) for 3 weeks. At 31 to 32 days after MCAO, anxiety- and depressive-like behaviors were assessed using sucrose consumption, forced swim test, and tail-suspension test. The results showed that pair housing significantly improved post-stroke depression to an extent comparable to that of fluoxetine treatment. Furthermore, pair housing significantly decreased corticosterone in serum, increasing OXT mRNA expression in the hypothalamus. Treatment with L368,889 essentially reversed the effect of pair housing, with no discernible sex differences apart from changes in body weight. Pair housing increased hippocampal serotonin (5-HT), but treatment with L368,889 had no significant impact. Additionally, pair housing effectively reduced the number of reactive astrocytes and increased Nissl's body in the cortex and hippocampal CA3 regions. Correspondingly, treatment with L368,889 significantly reversed the changes in the Nissl's body and reactive astrocytes. Moreover, pair housing downregulated mRNA levels of TNF-α, IL-1ß, and IL-6 in the cortex caused by PSD, which was also reversed by treatment with L368,889. In conclusion, pair housing protects against the development of PSD depending on OXT and OXTR in the brain, with no significant divergence based on sex. These findings provide valuable insights into the potential of social interaction and oxytocin as therapeutic targets for PSD. Further research into the underlying mechanisms of these effects may contribute to the development of novel treatments for PSD.


Subject(s)
Camphanes , Depression , Disease Models, Animal , Fluoxetine , Piperazines , Receptors, Oxytocin , Animals , Receptors, Oxytocin/metabolism , Male , Depression/etiology , Depression/metabolism , Mice , Fluoxetine/pharmacology , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/psychology , Housing, Animal , Oxytocin/pharmacology , Oxytocin/metabolism , Mice, Inbred C57BL , Stroke/complications , Stroke/psychology , Behavior, Animal/drug effects , Hippocampus/metabolism , Hippocampus/drug effects
11.
Epilepsia ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38593237

ABSTRACT

OBJECTIVE: Sudden unexpected death in epilepsy (SUDEP) is an underestimated complication of epilepsy. Previous studies have demonstrated that enhancement of serotonergic neurotransmission suppresses seizure-induced sudden death in evoked seizure models. However, it is unclear whether elevated serotonin (5-HT) function will prevent spontaneous seizure-induced mortality (SSIM), which is characteristic of human SUDEP. We examined the effects of 5-HT-enhancing agents that act by three different pharmacological mechanisms on SSIM in Dravet mice, which exhibit a high incidence of SUDEP, modeling human Dravet syndrome. METHODS: Dravet mice of both sexes were evaluated for spontaneous seizure characterization and changes in SSIM incidence induced by agents that enhance 5-HT-mediated neurotransmission. Fluoxetine (a selective 5-HT reuptake inhibitor), fenfluramine (a 5-HT releaser and agonist), SR 57227 (a specific 5-HT3 receptor agonist), or saline (vehicle) was intraperitoneally administered over an 8-day period in Dravet mice, and the effect of these treatments on SSIM was examined. RESULTS: Spontaneous seizures in Dravet mice generally progressed from wild running to tonic seizures with or without SSIM. Fluoxetine at 30 mg/kg, but not at 20 or 5 mg/kg, significantly reduced SSIM compared with the vehicle control. Fenfluramine at 1-10 mg/kg, but not .2 mg/kg, fully protected Dravet mice from SSIM, with all mice surviving. Compared with the vehicle control, SR 57227 at 20 mg/kg, but not at 10 or 5 mg/kg, significantly lowered SSIM. The effect of these drugs on SSIM was independent of sex. SIGNIFICANCE: Our data demonstrate that elevating serotonergic function by fluoxetine, fenfluramine, or SR 57227 significantly reduces or eliminates SSIM in Dravet mice in a sex-independent manner. These findings suggest that deficits in serotonergic neurotransmission likely play an important role in the pathogenesis of SSIM, and fluoxetine and fenfluramine, which are US Food and Drug Administration-approved medications, may potentially prevent SUDEP in at-risk patients.

12.
Front Psychiatry ; 15: 1368489, 2024.
Article in English | MEDLINE | ID: mdl-38651012

ABSTRACT

The glymphatic system, a macroscopic waste clearance system in the brain, is crucial for maintaining neural health. It facilitates the exchange of cerebrospinal and interstitial fluid, aiding the clearance of soluble proteins and metabolites and distributing essential nutrients and signaling molecules. Emerging evidence suggests a link between glymphatic dysfunction and the pathogenesis of neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's disease. These disorders are characterized by the accumulation and propagation of misfolded or mutant proteins, a process in which the glymphatic system is likely involved. Impaired glymphatic clearance could lead to the buildup of these toxic proteins, contributing to neurodegeneration. Understanding the glymphatic system's role in these disorders could provide insights into their pathophysiology and pave the way for new therapeutic strategies. Pharmacological enhancement of glymphatic clearance could reduce the burden of toxic proteins and slow disease progression. Neuroimaging techniques, particularly MRI-based methods, have emerged as promising tools for studying the glymphatic system in vivo. These techniques allow for the visualization of glymphatic flow, providing insights into its function under healthy and pathological conditions. This narrative review highlights current MRI-based methodologies, such as motion-sensitizing pulsed field gradient (PFG) based methods, as well as dynamic gadolinium-based and glucose-enhanced methodologies currently used in the study of neurodegenerative disorders.

13.
iScience ; 27(4): 109328, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38500837

ABSTRACT

We theoretically propose a multiple-mode-coupling hybrid quantum system comprising two-mode-coupling nanomechanical carbon nanotube (CNT) resonators realized by a phase-dependent phonon-exchange interaction interacting with the same nitrogen-vacancy (NV) center in diamond. We investigate the coherent optical responses of the NV center under the condition of resonance and detuning. In particular, two-color electromagnetically induced transparency (EIT) can be achieved by controlling the system parameters and coupling regimes. Combining the spin-phonon interactions and phonon-phonon coupling with the modulation phase, the switching of one and two EIT windows has been demonstrated, which generates a light delay or advance. The slow-to-fast and fast-to-slow light transitions have been studied in different coupling regimes, and the switch between slow and fast light can be controlled periodically by tuning the modulation phase. The study can be applied to phonon-mediated optical information storage or information processing with spin qubits based on multiple-mode hybrid quantum systems.

14.
Ther Adv Med Oncol ; 16: 17588359241234504, 2024.
Article in English | MEDLINE | ID: mdl-38449561

ABSTRACT

Background: Some studies of dual-targeted therapy (DTT) targeting epidermal growth factor receptor (EGFR) and mesenchymal-epithelial transition (MET) have shown promising efficacy in non-small-cell lung cancer (NSCLC). Consequently, patient management following DTT resistance has gained significance. However, the underlying resistance mechanisms and clinical outcomes in these patients remain unclear. Objectives: This study aimed to delineate the molecular characteristics and survival outcomes of patients with NSCLC harboring EGFR mutations and acquired MET amplification after developing resistance to DTT. Design: We conducted a retrospective analysis of patients with NSCLC with EGFR mutations and acquired MET amplification who exhibited resistance to EGFR/MET DTT. Methods: Next-generation sequencing (NGS) was performed on patients with available tissue samples before and/or after the development of resistance to DTT. Stratified analyses were carried out based on data sources and subsequent salvage treatments. Univariate/multivariate Cox regression models and survival analyses were employed to explore potential independent prognostic factors. Results: The study included 77 NSCLC patients, with NGS conducted on 19 patients. We observed many resistance mechanisms, including EGFR-dependent pathways (4/19, 21.1%), MET-dependent pathways (2/19, 10.5%), EGFR/MET co-dependent pathways (2/19, 10.5%), and EGFR/MET-independent resistance mechanisms (11/19, 57.9%). Post-progression progression-free survival (pPFS) and post-progression overall survival (pOS) significantly varied among patients who received the best supportive care (BSC), targeted therapy, or chemotherapy (CT), with median pPFS of 1.5, 3.9, and 4.9 months, respectively (p = 0.003). Median pOS were 2.3, 7.7, and 9.2 months, respectively (p < 0.001). The number of treatment lines following DTT resistance and the Eastern Cooperative Oncology Group performance status emerged as the independent prognostic factors. Conclusion: This study revealed a heterogeneous landscape of resistance mechanisms to EGFR/MET DTT, with a similar prevalence of on- and off-target mechanisms. Targeted therapy or CT, as compared to BSC, exhibited the potential to improve survival outcomes for patients with advanced NSCLC following resistance to DTT.

15.
medRxiv ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38496664

ABSTRACT

Background/Purpose: Leptomeningeal enhancement (LME) on post-contrast FLAIR is described as a potential biomarker of meningeal inflammation in multiple sclerosis (MS). Here we report a comprehensive assessment of the impact of MRI field strength and acquisition timing on meningeal contrast enhancement (MCE). Methods: This was a cross-sectional, observational study of 95 participants with MS and 17 healthy controls (HC) subjects. Each participant underwent an MRI of the brain on both a 7 Tesla (7T) and 3 Tesla (3T) MRI scanner. 7T protocols included a FLAIR image before, soon after (Gd+ Early 7T FLAIR), and 23 minutes after gadolinium (Gd+ Delayed 7T FLAIR). 3T protocol included FLAIR before and 21 minutes after gadolinium (Gd+ Delayed 3T FLAIR). Results: LME was seen in 23.3% of participants with MS on Gd+ Delayed 3T FLAIR, 47.4% on Gd+ Early 7T FLAIR (p = 0.002) and 57.9% on Gd+ Delayed 7T FLAIR (p < 0.001 and p = 0.008, respectively). The count and volume of LME, leptomeningeal and paravascular enhancement (LMPE), and paravascular and dural enhancement (PDE) were all highest for Gd+ Delayed 7T FLAIR and lowest for Gd+ Delayed 3T FLAIR. Non-significant trends were seen for higher proportion, counts, and volumes for LME and PDE in MS compared to HCs. The rate of LMPE was different between MS and HCs on Gd+ Delayed 7T FLAIR (98.9% vs 82.4%, p = 0.003). MS participants with LME on Gd+ Delayed 7T FLAIR were older (47.6 (10.6) years) than those without (42.0 (9.7), p = 0.008). Conclusion: 7T MRI and a delay after contrast injection increased sensitivity for all forms of MCE. However, the lack of difference between groups for LME and its association with age calls into question its relevance as a biomarker of meningeal inflammation in MS.

16.
Ying Yong Sheng Tai Xue Bao ; 35(2): 523-532, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38523111

ABSTRACT

Dissolved oxygen (DO) is an important index to evaluate the quality of surface water environments. In recent years, anomalies in DO level have emerged as a major contributor to the decline of surface water quality. These anomalies have triggered several ecological and environmental challenges such as biodiversity loss, the degradation of water environmental quality, intensification of eutrophication, and an exacerbation of the greenhouse effect. Understanding the mechanisms underlying DO anomalies and devising targeted remediation strategies holds paramount importance in the scientific pursuit of water pollution control and aquatic ecosystem restoration. We explored and summarized the fluctuations and abnormal mechanism of DO concentration in surface water, focusing on factors like oxygen solubility, reoxygenation rates, and oxygen consumption by water bodies. We compiled a range of approaches for addressing DO anomalies, including pollution source management, artificial oxygenation, and the reconfiguration of aquatic ecosystems. Ultimately, we underscored the emerging significance of monitoring and regulating DO level in surface waters. Future research in this realm should encompass the establishment of distinct quality standards for surface water, the development of a comprehensive real-time spatial monitoring system for DO levels across watersheds, and the formulation of standardized procedures and technical norms.


Subject(s)
Ecosystem , Oxygen , Water Quality , Biodiversity , Eutrophication , Environmental Monitoring
18.
Mol Aspects Med ; 96: 101256, 2024 04.
Article in English | MEDLINE | ID: mdl-38359699

ABSTRACT

Well-characterized reference materials support harmonization and accuracy when conducting nucleic acid-based tests (such as qPCR); digital PCR (dPCR) can measure the absolute concentration of a specific nucleic acid sequence in a background of non-target sequences, making it ideal for the characterization of nucleic acid-based reference materials. National Metrology Institutes are increasingly using dPCR to characterize and certify their reference materials, as it offers several advantages over indirect methods, such as UV-spectroscopy. While dPCR is gaining widespread adoption, it requires optimization and has certain limitations and considerations that users should be aware of when characterizing reference materials. This review highlights the technical considerations of dPCR, as well as its role when developing and characterizing nucleic acid-based reference materials.


Subject(s)
Nucleic Acids , Humans , Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/methods
19.
Brain Imaging Behav ; 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38407737

ABSTRACT

We investigated abnormal functional connectivity (FC) patterns of insular subregions in patients with minimal hepatic encephalopathy (MHE) and examined their relationships with cognitive dysfunction using resting-state functional magnetic resonance imaging (fMRI). We collected resting-state fMRI data in 54 patients with cirrhosis [20 with MHE and 34 without MHE (NHE)] and 25 healthy controls. After defining six subregions of insula, we mapped whole-brain FC of the insular subregions and identified FC differences through three groups. FC of the insular subregions was correlated against clinical parameters (including venous blood ammonia level, Child-Pugh score, and cognitive score). The discrimination performance between the MHE and NHE groups was evaluated by performing a classification analysis using the FC index. Across three groups, the observed FC differences involved four insular subregions, including the left-ventral anterior insula, left-dorsal anterior insula, right-dorsal anterior insula, and left-posterior insula (P < 0.05 with false discovery rate correction). Moreover, the FC of these four insular subregions progressively attenuated from NHE to MHE. In addition, hypoconnectivity of insular subregions was correlated with the poor neuropsychological performance and the evaluated blood ammonia levels in patients (P < 0.05 with Bonferroni correction). The FC of insular subregions yielded moderate discriminative value between the MHE and NHE groups (AUC = 0.696-0.809). FC disruption of insular subregions is related to worse cognitive performance in MHE. This study extended our understanding about the neurophysiology of MHE and may assist for its diagnosis.

20.
World J Gastrointest Surg ; 16(1): 76-84, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38328324

ABSTRACT

BACKGROUND: The liver is an important metabolic and digestive organ in the human body, capable of producing bile, clotting factors, and vitamins. AIM: To investigate the recovery of gastrointestinal function in patients after hepatobiliary surgery and identify effective rehabilitation measures. METHODS: A total of 200 patients who underwent hepatobiliary surgery in our hospital in 2022 were selected as the study subjects. They were divided into a control group and a study group based on the extent of the surgery, with 100 patients in each group. The control group received routine treatment, while the study group received targeted interventions, including early enteral nutrition support, drinking water before gas discharge, and large bowel enema, to promote postoperative gastrointestinal function recovery. The recovery of gastrointestinal function was compared between the two groups. RESULTS: Compared with the control group, patients in the study group had better recovery of bowel sounds and less accumulation of fluids in the liver bed and gallbladder fossa (P < 0.05). They also had shorter time to gas discharge and first meal (P < 0.05), higher overall effective rate of gastrointestinal function recovery (P < 0.05), and lower incidence of postoperative complications (P < 0.05). CONCLUSION: Targeted nursing interventions (early nutritional support, drinking water before gas discharge, and enema) can effectively promote gastrointestinal function recovery in patients undergoing hepatobiliary surgery and reduce the incidence of complications, which is worthy of promotion.

SELECTION OF CITATIONS
SEARCH DETAIL
...