Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 193
Filter
1.
J Inflamm Res ; 17: 3499-3513, 2024.
Article in English | MEDLINE | ID: mdl-38828053

ABSTRACT

Purpose: The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, crucial in infectious and inflammatory diseases by regulating IL-1ß, presents a target for disease management. Neisseria gonorrhoeae causes gonorrhea in over 87 million people annually, with previous research revealing NLRP3 inflammasome activation in infected macrophages. No natural products have been reported to counteract this activation. Exploring honokiol, a phenolic compound from Chinese herbal medicine, we investigated its impact on NLRP3 inflammasome activation in N. gonorrhoeae-infected macrophages. Methods: Honokiol's impact on the protein expression of pro-inflammatory mediators was analyzed using ELISA and Western blotting. The generation of intracellular H2O2 and mitochondrial reactive oxygen species (ROS) was detected through specific fluorescent probes (CM-H2DCFDA and MitoSOX, respectively) and analyzed by flow cytometry. Mitochondrial membrane integrity was assessed using specific fluorescent probes (MitoTracker and DiOC2(3)) and analyzed by flow cytometry. Additionally, the effect of honokiol on the viability of N. gonorrhoeae was examined through an in vitro colony-forming units assay. Results: Honokiol effectively inhibits caspase-1, caspase-11 and GSDMD activation and reduces the extracellular release of IL-1ß, NLRP3, and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) in N. gonorrhoeae-infected macrophages. Detailed investigations have demonstrated that honokiol lowers the production of H2O2 and the phosphorylation of ERK1/2 in N. gonorrhoeae-infected macrophages. Importantly, the phosphorylation of JNK1/2 and p38 and the activation of NF-κB remain unaffected. Moreover, honokiol reduces the N. gonorrhoeae-mediated generation of reactive oxygen species within the mitochondria, preserving their integrity. Additionally, honokiol suppresses the expression of the pro-inflammatory mediator IL-6 and inducible nitric oxide synthase induced by N. gonorrhoeae independently of NLRP3. Impressively, honokiol exhibits in vitro anti-gonococcal activity against N. gonorrhoeae. Conclusion: Honokiol inhibits the NLRP3 inflammasome in N. gonorrhoeae-infected macrophages and holds great promise for further development as an active ingredient in the prevention and treatment of symptoms associated with gonorrhea.

2.
J Inflamm (Lond) ; 21(1): 18, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840105

ABSTRACT

BACKGROUND: Worldwide, more than 125 million people are infected with Shigella each year and develop shigellosis. In our previous study, we provided evidence that Shigella sonnei infection triggers activation of the NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome in macrophages. NLRP3 inflammasome is responsible for regulating the release of the proinflammatory cytokines interleukin (IL)-1ß and IL-18 through the protease caspase-1. Researchers and biotech companies have shown great interest in developing inhibitors of the NLRP3 inflammasome, recognizing it as a promising therapeutic target for several diseases. The leaves of Cinnamomum osmophloeum kaneh, an indigenous tree species in Taiwan, are rich in cinnamaldehyde (CA), a compound present in significant amounts. Our aim is to investigate how CA affects the activation of the NLRP3 inflammasome in S. sonnei-infected macrophages. METHODS: Macrophages were infected with S. sonnei, with or without CA. ELISA and Western blotting were employed to detect protein expression or phosphorylation levels. Flow cytometry was utilized to assess H2O2 production and mitochondrial damage. Fluorescent microscopy was used to detect cathepsin B activity and mitochondrial ROS production. Additionally, colony-forming units were employed to measure macrophage phagocytosis and bactericidal activity. RESULTS: CA inhibited the NLRP3 inflammasome in S. sonnei-infected macrophages by suppressing caspase-1 activation and reducing IL-1ß and IL-18 expression. CA also inhibited pyroptosis by decreasing caspase-11 and Gasdermin D activation. Mechanistically, CA reduced lysosomal damage and enhanced autophagy, while leaving mitochondrial damage, mitogen-activated protein kinase phosphorylation, and NF-κB activation unaffected. Furthermore, CA significantly boosted phagocytosis and the bactericidal activity of macrophages against S. sonnei, while reducing secretion of IL-6 and tumour necrosis factor following infection. CONCLUSION: CA shows promise as a nutraceutical for mitigating S. sonnei infection by diminishing inflammation and enhancing phagocytosis and the bactericidal activity of macrophages against S. sonnei.

3.
J Physiol Investig ; 67(3): 139-152, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38902958

ABSTRACT

Inflammatory bowel disease (IBD) comprises a group of idiopathic intestinal disorders, including ulcerative colitis and Crohn's disease, significantly impacting the quality of life for affected individuals. The effective management of these conditions remains a persistent challenge. The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, a complex molecular structure, regulates the production of pro-inflammatory cytokines such as interleukin-1ß. Abnormal activation of the NLRP3 inflammasome plays a pivotal role in the development of IBD, making it a compelling target for therapeutic intervention. Our research revealed that cinnamaldehyde (CA), a major bioactive compound found in the leaves of Cinnamomum osmophloeum kaneh, demonstrated a remarkable ability to alleviate colitis induced by dextran sulfate sodium (DSS) in a mouse model. This effect was attributed to CA's ability to downregulate the activation of the NLRP3 inflammasome and reduce the expression of pro-inflammatory mediators in the colon. In the mechanism study, we observed that CA inhibited the NLRP3 inflammasome in macrophages, at least partially, by enhancing the autophagic response, without reducing mitochondrial damage. These findings collectively suggest that CA holds significant potential as a therapeutic agent for enhancing the management of IBD, offering a promising avenue for further research and development.


Subject(s)
Acrolein , Cinnamomum , Colitis , Dextran Sulfate , Inflammasomes , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Plant Leaves , Animals , Acrolein/analogs & derivatives , Acrolein/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Mice , Colitis/chemically induced , Colitis/drug therapy , Cinnamomum/chemistry , Inflammasomes/drug effects , Inflammasomes/metabolism , Plant Leaves/chemistry , Male
4.
Inflammation ; 47(2): 696-717, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38319541

ABSTRACT

The intracellular sensor protein complex known as the NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome plays a crucial role in regulating inflammatory diseases by overseeing the production of interleukin (IL)-1ß and IL-18. Targeting its abnormal activation with drugs holds significant promise for inflammation treatment. This study highlights LCZ696, an angiotensin receptor-neprilysin inhibitor, as an effective suppressor of NLRP3 inflammasome activation in macrophages stimulated by ATP, nigericin, and monosodium urate. LCZ696 also reduces caspase-11 and GSDMD activation, lactate dehydrogenase release, propidium iodide uptake, and the extracellular release of NLRP3 and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) in ATP-activated macrophages, suggesting a potential mitigation of pyroptosis. Mechanistically, LCZ696 lowers mitochondrial reactive oxygen species and preserves mitochondrial integrity. Importantly, it does not significantly impact NLRP3, proIL-1ß, inducible nitric oxide synthase, cyclooxygenase-2 expression, or NF-κB activation in lipopolysaccharide-activated macrophages. LCZ696 partially inhibits the NLRP3 inflammasome through the induction of autophagy. In an in vivo context, LCZ696 alleviates NLRP3-associated colitis in a mouse model by reducing colonic expression of IL-1ß and tumor necrosis factor-α. Collectively, these findings suggest that LCZ696 holds significant promise as a therapeutic agent for ameliorating NLRP3 inflammasome activation in various inflammatory diseases, extending beyond its established use in hypertension and heart failure treatment.


Subject(s)
Aminobutyrates , Biphenyl Compounds , Colitis , Dextran Sulfate , Disease Models, Animal , Inflammasomes , Macrophages , Mitochondria , NLR Family, Pyrin Domain-Containing 3 Protein , Valsartan , Animals , Mice , Aminobutyrates/pharmacology , Aminobutyrates/therapeutic use , Angiotensin Receptor Antagonists/pharmacology , Angiotensin Receptor Antagonists/therapeutic use , Biphenyl Compounds/pharmacology , Colitis/drug therapy , Colitis/chemically induced , Colitis/metabolism , Dextran Sulfate/toxicity , Drug Combinations , Inflammasomes/metabolism , Inflammasomes/antagonists & inhibitors , Macrophages/metabolism , Macrophages/drug effects , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Neprilysin/antagonists & inhibitors , Neprilysin/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Valsartan/pharmacology , Male
5.
Oncogene ; 43(7): 511-523, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38177412

ABSTRACT

Leukocyte cell-derived chemotaxin 2 (LECT2) is a multifunctional cytokine that can bind to several receptors and mediate distinct molecular pathways in various cell settings. Changing levels of LECT2 have been implicated in multiple human disease states, including cancers. Here, we have demonstrated reduced serum levels of LECT2 in patients with epithelial ovarian cancer (EOC) and down-regulated circulating Lect2 as the disease progresses in a syngeneic mouse ID8 EOC model. Using the murine EOC model, we discovered that loss of Lect2 promotes EOC progression by modulating both tumor cells and the tumor microenvironment. Lect2 inhibited EOC cells' invasive phenotype and suppressed EOC's transcoelomic metastasis by targeting c-Met signaling. In addition, Lect2 downregulation induced the accumulation and activation of myeloid-derived suppressor cells (MDSCs). This fostered an immunosuppressive microenvironment in EOC by inhibiting T-cell activation and skewing macrophages toward an M2 phenotype. The therapeutic efficacy of programmed cell death-1 (PD-1)/PD-L1 pathway blockade for the ID8 model was significantly hindered. Overall, our data highlight multiple functions of Lect2 during EOC progression and reveal a rationale for synergistic immunotherapeutic strategies by targeting Lect2.


Subject(s)
Ovarian Neoplasms , Humans , Mice , Animals , Female , Ovarian Neoplasms/pathology , Carcinoma, Ovarian Epithelial/metabolism , Macrophages/metabolism , Signal Transduction , Immunosuppressive Agents , Disease Models, Animal , Tumor Microenvironment/genetics , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism
6.
Anim Biosci ; 37(1): 1-15, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37641827

ABSTRACT

Poultry coccidiosis is an intestinal infection caused by an intracellular parasitic protozoan of the genus Eimeria. Coccidia-induced gastrointestinal inflammation results in large economic losses, hence finding methods to decrease its prevalence is critical for industry participants and academic researchers. It has been demonstrated that coccidiosis can be effectively controlled and managed by employing anticoccidial chemical compounds. However, as a result of their extensive use, anticoccidial drug resistance in Eimeria species has raised concerns. Phytochemical/herbal medicines (Artemisia annua, Bidens pilosa, and garlic) seem to be a promising strategy for preventing coccidiosis, in accordance with the "anticoccidial chemical-free" standards. The impact of herbal supplements on poultry coccidiosis is based on the reduction of oocyst output by preventing the proliferation and growth of Eimeria species in chicken gastrointestinal tissues and lowering intestinal permeability via increased epithelial turnover. This review provides a thorough up-to-date assessment of the state of the art and technologies in the prevention and treatment of coccidiosis in chickens, including the most used phytochemical medications, their mode of action, and the applicable legal framework in the European Union.

7.
Chin J Physiol ; 66(5): 313-325, 2023.
Article in English | MEDLINE | ID: mdl-37929342

ABSTRACT

The flowers of daylily (Hemerocallis fulva Linn.) have been used as vegetable and medicinal herb for thousands of years in Taiwan and eastern Asia. Daylily flowers have been demonstrated to exert several biomedical properties. In this study, we provided the evidences show that daylily flowers exert anti-inflammatory activity in vitro and improved the sleep quality in vivo. We demonstrated that adult volunteers received water extract of daylily flowers improved sleep quality, sleep efficiency and daytime functioning, while sleep latency was reduced, compared to the adult volunteers received water. In addition, we demonstrated that aqueous and ethanol extracts of daylily flowers inhibited nitric oxide and interleukin-6 production in lipopolysaccharide-activated macrophages. Furthermore, the quantitative high performance liquid chromatography-based analysis showed the rutin content of the aqueous extract, ethanolic extract, ethyl acetate fractions of ethanolic extract, and water fractions of ethanolic extract were 7.27, 23.30, 14.71, and 57.43 ppm, respectively. These results indicate that daylily flowers have the potential to be a nutraceutical for improving inflammatory-related diseases and sleep quality in the future.


Subject(s)
Hemerocallis , Plant Extracts , Sleep Quality , Humans , Flowers/chemistry , Hemerocallis/chemistry , Interleukin-6 , Macrophages , Nitric Oxide , Plant Extracts/pharmacology
8.
J Inflamm Res ; 16: 4867-4884, 2023.
Article in English | MEDLINE | ID: mdl-37908202

ABSTRACT

Purpose: Coronavirus disease 2019 (COVID-19) poses a global health challenge with widespread transmission. Growing concerns about vaccine side effects, diminishing efficacy, and religious-based hesitancy highlight the need for alternative pharmacological approaches. Our study investigates the impact of the ethanol extract of Antrodia cinnamomea (AC), a native medicinal fungus from Taiwan, on COVID-19 in both in vitro and in vivo contexts. Methods: We measured the mRNA and protein levels of angiotensin-converting enzyme-2 (ACE2) in human lung cells using real-time reverse transcriptase-polymerase chain reaction and Western blotting, respectively. Additionally, we determined the enzymatic activity of ACE2 using the fluorogenic peptide substrate Mca-YVADAPK(Dnp)-OH. To assess the impact of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, we used SARS-CoV-2 pseudovirus infections in human embryonic kidney 293T cells expressing ACE2 to measure infection rates. Furthermore, we evaluated the in vivo efficacy of AC in mitigating COVID-19 by conducting experiments on hamsters infected with the Delta variant of SARS-CoV-2. Results: AC effectively decreased ACE2 mRNA and protein levels, a critical host receptor for the SARS-CoV-2 spike protein, in human lung cells. It also prevented the spike protein from binding to human lung cells. Dehydrosulphurenic acid, an isolate from AC, directly inhibited ACE2 protease activity with an inhibitory constant of 1.53 µM. In vitro experiments showed that both AC and dehydrosulphurenic acid significantly reduced the infection rate of SARS-CoV-2 pseudovirus. In hamsters infected with the Delta variant of SARS-CoV-2, oral administration of AC reduced body weight loss and improved lung injury. Notably, AC also inhibited IL-1ß expression in both macrophages and the lung tissues of SARS-CoV-2-infected hamsters. Conclusion: AC shows potential as a nutraceutical for reducing the risk of SARS-CoV-2 infection by disrupting the interaction between ACE2 and the SARS-CoV-2 spike protein, and for preventing COVID-19-associated lung inflammation.

9.
J Inflamm Res ; 16: 5235-5248, 2023.
Article in English | MEDLINE | ID: mdl-38026238

ABSTRACT

Purpose: Intervertebral disc (IVD) degeneration, associated with aging, may cause low back pain and disability, with obesity as a significant risk factor. In a prior study, we found a positive correlation between IVD degeneration and levels of matrix metalloproteinase-1 (MMP-1) and leptin. Yet, the interaction between MMP-1 and leptin in IVD degeneration is unclear. Our research seeks to explore leptin's influence on MMP-1 expression and the underlying mechanisms in human intervertebral disc cartilage endplate-derived stem cells, specifically SV40 cells. Methods: The mRNA and protein expression in leptin-stimulated SV40 cells were assessed using RT-real-time PCR and Western blotting or ELISA, respectively. We examined leptin-mediated RhoA activation through a GTP-bound RhoA pull-down assay. Furthermore, the phosphorylation levels of mitogen-activated protein kinases and AKT in leptin-stimulated SV40 cells were analyzed using Western blotting. The activation of NF-κB by leptin was investigated by assessing phosphorylation of IKKα/ß, IκBα, and NF-κB p65, along with the nuclear translocation of NF-κB p65. To understand the underlying mechanism behind leptin-mediated MMP-1 expression, we employed specific inhibitors. Results: Leptin triggered the mRNA and protein expression of MMP-1 in SV40 cells. In-depth mechanistic investigations uncovered that leptin heightened RhoA activity, promoted ERK1/2 phosphorylation, and increased NF-κB activity. However, leptin did not induce phosphorylation of JNK1/2, p38, or AKT. When we inhibited RhoA, ERK1/2, and NF-κB, it resulted in a decrease in MMP-1 expression. Conversely, inhibition of reactive oxygen species and NADPH oxidase did not yield the same outcome. Additionally, inhibiting RhoA or ERK1/2 led to a reduction in leptin-induced NF-κB activation. Moreover, inhibiting RhoA also decreased leptin-mediated ERK1/2 phosphorylation. Conclusion: These results indicated that leptin induced MMP-1 expression in SV40 cells through the RhoA/ERK1/2/NF-κB axis. This study provided the pathogenic role of leptin and suggested the potential therapeutic target for IVD degeneration.

10.
Biochim Biophys Acta Rev Cancer ; 1878(6): 188973, 2023 11.
Article in English | MEDLINE | ID: mdl-37659460

ABSTRACT

Nα-acetyltransferase 10 protein (Naa10p) is known as the catalytic subunit of N-terminal acetyltransferases A (NatA) complex, associating with Naa15p to acetylate N-termini of the human proteome. Recent investigations have unveiled additional functions for Naa10p, encompassing lysine ε-acetylation and acetyltransferase-independent activities. Its pleiotropic roles have been implicated in diverse physiological and pathological contexts. Emerging evidence has implicated Naa10p in cancer progression, demonstrating dual attributes as an oncogene or a tumor suppressor contingent on the cancer type and acetyltransferase activity context. In this comprehensive review, we present a pan-cancer analysis aimed at elucidating the intricacies underlying Naa10p dysregulation in cancer. Our findings propose the potential involvement of c-Myc as a modulatory factor influencing Naa10p expression. Moreover, we provide a consolidated summary of recent advancements in understanding the intricate molecular underpinnings through which Naa10p contributes to cancer cell proliferation and metastasis. Furthermore, we delve into the multifaceted nature of Naa10p's roles in regulating cancer behaviors, potentially attributed to its interactions with a repertoire of partner proteins. Through an exhaustive exploration of Naa10p's functions, spanning its acetylation activity and acetyltransferase-independent functionalities, this review offers novel insights with implications for targeted therapeutic strategies involving this pivotal protein in the realm of cancer therapeutics.


Subject(s)
Acetyltransferases , Neoplasms , Humans , Acetyltransferases/genetics , Acetyltransferases/metabolism , N-Terminal Acetyltransferase E/genetics , N-Terminal Acetyltransferase E/metabolism , N-Terminal Acetyltransferase A/genetics , N-Terminal Acetyltransferase A/metabolism , Protein Processing, Post-Translational , Neoplasms/drug therapy , Neoplasms/genetics
11.
J Biomed Sci ; 30(1): 68, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37580757

ABSTRACT

BACKGROUND: KH-type splicing regulatory protein (KHSRP, also called KSRP), a versatile RNA-binding protein, plays a critical role in various physiological and pathological conditions through modulating gene expressions at multiple levels. However, the role of KSRP in clear cell renal cell carcinoma (ccRCC) remains poorly understood. METHODS: KSRP expression was detected by a ccRCC tissue microarray and evaluated by an in silico analysis. Cell loss-of-function and gain-of-function, colony-formation, anoikis, and transwell assays, and an orthotopic bioluminescent xenograft model were conducted to determine the functional role of KRSP in ccRCC progression. Micro (mi)RNA and complementary (c)DNA microarrays were used to identify downstream targets of KSRP. Western blotting, quantitative real-time polymerase chain reaction, and promoter- and 3-untranslated region (3'UTR)-luciferase reporter assays were employed to validate the underlying mechanisms of KSRP which aggravate progression of ccRCC. RESULTS: Our results showed that dysregulated high levels of KSRP were correlated with advanced clinical stages, larger tumor sizes, recurrence, and poor prognoses of ccRCC. Neural precursor cell-expressed developmentally downregulated 4 like (NEDD4L) was identified as a novel target of KSRP, which can reverse the protumorigenic and prometastatic characteristics as well as epithelial-mesenchymal transition (EMT) promotion by KSRP in vitro and in vivo. Molecular studies revealed that KSRP can decrease NEDD4L messenger (m)RNA stability via inducing mir-629-5p upregulation and directly targeting the AU-rich elements (AREs) of the 3'UTR. Moreover, KSRP was shown to transcriptionally suppress NEDD4L via inducing the transcriptional repressor, Wilm's tumor 1 (WT1). In the clinic, ccRCC samples revealed a positive correlation between KSRP and mesenchymal-related genes, and patients expressing high KSRP and low NEDD4L had the worst prognoses. CONCLUSION: The current findings unveil novel mechanisms of KSRP which promote malignant progression of ccRCC through transcriptional inhibition and post-transcriptional destabilization of NEDD4L transcripts. Targeting KSRP and its pathways may be a novel pharmaceutical intervention for ccRCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , MicroRNAs , RNA-Binding Proteins , Humans , 3' Untranslated Regions , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Ubiquitin/metabolism
13.
Chembiochem ; 24(10): e202300183, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37042436

ABSTRACT

Marine bacteria, which are often described as chemical gold, are considered an exceptional source of new therapeutics. Considerable research interest has been given to lipopolysaccharides (LPSs), the main components of the Gram-negative outer membrane. LPS and its lipid A portion from marine bacteria are known to exhibit a tricky chemistry that has been often associated with intriguing properties such as behaving as immune adjuvants or anti-sepsis molecules. In this scenario, we report the structural determination of the lipid A from three marine bacteria within the Cellulophaga genus, which showed to produce an extremely heterogenous blend of tetra- to hexa-acylated lipid A species, mostly carrying one phosphate and one D-mannose on the glucosamine disaccharide backbone. The ability of the three LPSs in activating TLR4 signaling revealed a weaker immunopotential by C. baltica NNO 15840T and C. tyrosinoxydans EM41T , while C. algicola ACAM 630T behaved as a more potent TLR4 activator.


Subject(s)
Flavobacteriaceae , Gammaproteobacteria , Lipid A/chemistry , Toll-Like Receptor 4 , Lipopolysaccharides/chemistry
14.
Toxicol Rep ; 9: 834-841, 2022.
Article in English | MEDLINE | ID: mdl-36518413

ABSTRACT

Steady-calcium formula (SCF), a functional food mixture with potential of joint care, contains five major ingredients. However, the uncertain cross-reactivity among these included ingredients cannot be excluded. Hence, it is important to ensure the safety of this mixture. In this study, the safety of SCF was evaluated through in vitro genotoxicity assessment and 28-day oral toxicity study in rats. The bacterial reverse mutation test and mammalian chromosome aberration test displayed that SCF did not induce mutagenicity and clastogenicity. The 28-day repeated dose assessment of SCF in rats revealed no mortality and adverse effects in clinical signs, body weight, urinalysis, hematology, organ weight, and histopathology at all treated groups. Although some significant changes were observed in food intake and parameters of serum biochemistry at the highest dose in males, they were not dose-related and considered to be within normal range. These findings indicate that SCF does not possess genotoxic potential and no obvious evidence of subacute toxicity. These results demonstrate for the first time that the genotoxicity and subacute toxicity for SCF are negative under our experimental conditions and the no observed adverse effect level (NOAEL) of SCF may be defined as at least 5470 mg/kg/day.

15.
Animals (Basel) ; 12(24)2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36552376

ABSTRACT

Inflammatory bowel disease (IBD) is a non-infectious disease characterized by chronic inflammation of the gastrointestinal tract. Currently, management of IBD is still a clinical challenge. The purpose of this study was to investigate the therapeutic potential of surfactin containing Bacillus licheniformis-fermented products (SBLF) and commercial surfactin (CS) on the treatment of dextran sulfate sodium (DSS)-induced colitis in a mouse model. We found that mice that received drinking water containing 3% DSS developed significant colitis symptoms, including increased disease activity index, body weight loss, shortening of the colon length, splenomegaly, colonic inflammation and colonic NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome activation. Notably, orally received SBLF, CS or clinical anti-inflammatory drug 5-aminosalicylic acid improved DSS-induced colitis symptoms in mice. These findings show that SBLF can improve IBD in mice by reducing colonic inflammation and inhibiting the NLRP3 inflammasome activation, suggesting that SBLF has the potential to be used as a nutraceutical in humans or a feed additive in economic and companion animals for preventing IBD.

16.
Cell Death Dis ; 13(11): 995, 2022 11 24.
Article in English | MEDLINE | ID: mdl-36433943

ABSTRACT

N-α-acetyltransferase 10 protein, Naa10p, is involved in various cellular functions impacting tumor progression. Due to its capacity to acetylate a large spectrum of proteins, both oncogenic and tumor-suppressive roles of Naa10p have been documented. Here, we report an oncogenic role of Naa10p in promoting metastasis of esophageal cancer. NAA10 is more highly expressed in esophageal cancer tissues compared to normal tissues. Higher NAA10 expression also correlates with poorer survival of esophageal cancer patients. We found that NAA10 expression was transcriptionally regulated by the critical oncogene c-Myc in esophageal cancer. Furthermore, activation of the c-Myc-Naa10p axis resulted in upregulated cell invasiveness of esophageal cancer. This increased cell invasiveness was also elucidated to depend on the enzymatic activity of Naa10p. Moreover, Naa10p cooperated with Naa15p to interact with the protease inhibitor, PAI1, and prevent its secretion. This inhibition of PAI1 secretion may derive from the N-terminal acetylation effect of the Naa10p/Naa15p complex. Our results establish the significance of Naa10p in driving metastasis in esophageal cancer by coordinating the c-Myc-PAI1 axis, with implications for its potential use as a prognostic biomarker and therapeutic target for esophageal cancer.


Subject(s)
Esophageal Neoplasms , Humans , Acetylation , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/physiopathology , N-Terminal Acetyltransferase A/genetics , N-Terminal Acetyltransferase A/metabolism , N-Terminal Acetyltransferase E/genetics , N-Terminal Acetyltransferase E/metabolism
17.
Int J Mol Sci ; 23(18)2022 Sep 08.
Article in English | MEDLINE | ID: mdl-36142298

ABSTRACT

The edible fungus Tremella fuciformis was shown to have a high molecular weight (1.87 × 103 kDa) bioactive polysaccharide, denoted as TFP-F1. Monosaccharide composition and NMR analysis of the polysaccharide and its derivatives indicated it contained fucose (Fucp), xylose (Xylp), mannose (Manp), and glucuronic acid (GlcAp) in a ratio of 0.9:1.0:3.2:1.2. Using IR, NMR, and GC-MS spectroscopic data, the structure of TFP-F1 was elucidated as {→3)-[ß-D-GlcAp-(1→2)]-α-D-Manp-(1→3)-α-D-Manp-(1→3)-[α-L-Fucp-(1→2)-ß-D-Xylp-(1→2)]-α-D-Manp-(1→}n, with partial acetylation of C6-OH in mannoses. Furthermore, at a concentration of 1 µg/mL, TFP-F1 was found to stimulate the secretion of TNF-α and IL-6 in J774A.1 macrophage cells in vitro via interaction with toll-like receptor 4 (TLR4). The removal of O-acetyl groups led to the loss of immunomodulatory activities, demonstrating that O-acetyl groups play an essential role in enhancing the production of pro-inflammatory cytokines.


Subject(s)
Toll-Like Receptor 4 , Tumor Necrosis Factor-alpha , Acetylation , Basidiomycota , Cytokines , Dietary Carbohydrates , Fucose , Glucuronic Acid , Immunomodulation , Interleukin-6 , Mannose , Monosaccharides , Polysaccharides/chemistry , Polysaccharides/pharmacology , Xylose
18.
Front Nutr ; 9: 871325, 2022.
Article in English | MEDLINE | ID: mdl-35967819

ABSTRACT

The intracellular sensor NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome controls caspase-1 activity and the maturation and release of the cytokines interleukin (IL)-1ß and IL-18. The NLRP3 inflammasome has attracted the attention of the pharmaceutical industry because it promotes the pathogenesis of many diseases, making it a promising target for drug development. Litsea cubeba (Lour.) is a plant traditionally used as a seasoning in Taiwan and in other Asian countries. In this study, we investigated the inhibitory activity of the leaves of L. cubeba against the NLRP3 inflammasome. We found that the ethanol extract of L. cubeba leaves (MLE) inhibited the NLRP3 inflammasome in macrophages by reducing caspase-1 activation and IL-1ß secretion. MLE reduced pyroptosis in macrophages and inhibited the release of NLRP3 and apoptosis-associated speck-like protein containing a CARD (ASC). In a mechanistic study, MLE reduced mitochondrial reactive oxygen species (ROS) production and preserved mitochondrial integrity, which led to reduced mitochondrial DNA release into the cytosol. MLE did not reduce the expression levels of NLRP3, IL-1ß precursor or TNF-α in lipopolysaccharide (LPS)-activated macrophages. These results indicated that MLE inhibited the NLRP3 inflammasome by suppressing the activation signals of the NLRP3 inflammasome but not by reducing the priming signal induced by LPS. In addition, oral administration of MLE (20-80 mg/kg) ameliorated dextran sulfate sodium (DSS)-induced colitis in a mouse model. Notably, mice that received MLE (1 and 2 g/kg) daily for 7 days did not exhibit visible side effects. Gas chromatography-mass spectrometry (GC-MS) analysis found that α-Terpinyl acetate (27.2%) and 1,8-Cineole (17.7%) were the major compounds in MLE. These results indicated that L. cubeba leaves have the potential to be a nutraceutical for preventing and improving NLRP3 inflammasome-related diseases.

19.
Cells ; 11(16)2022 08 12.
Article in English | MEDLINE | ID: mdl-36010589

ABSTRACT

The skeletal muscle progenitors' proliferation and migration are crucial stages of myogenesis. Identifying drug candidates that contribute to myogenesis can have a positive impact on atrophying muscle. The purpose of the study is to synthesize the Antrodia cinnamomea (AC)-ß-cyclodextrin (BCD) inclusion complex (IC) and understand its in vitro pro-regenerative influence in murine skeletal C2C12 myoblasts. The IC was subjected to various nano-characterization studies. Fluorescent IC was synthesized to understand the cellular uptake of IC. Furthermore, 25 µg/mL, 12.5 µg/mL, and 6.25 µg/mL of IC were tested on murine C2C12 skeletal muscle cells for their anti-inflammatory, pro-migratory, and pro-proliferative action. The cellular internalization of IC occurred rapidly via pinocytosis. IC (252.6 ± 3.2 nm size and -37.24 ± 1.55 surface charge) exhibited anti-inflammatory action by suppressing the secretion of interleukin-6 and enhanced cell proliferation with promising cytocompatibility. A 12.5 µg/mL dose of IC promoted cell migration in 24 h, but the same dose of AC significantly reduced cell migration, suggesting modification by BCD. Molecular studies revealed that IC promoted C2C12 myoblasts migration by upregulating long non-coding RNA (lncRNA) NEAT-1, SYISL, and activating the pPKC/ß-catenin pathway. Our study is the first report on the pro-proliferative and pro-migratory effects of BCD-modified extracts of AC.


Subject(s)
Antrodia , Polyporales , Animals , Anti-Inflammatory Agents/pharmacology , Mice , Muscle Development
20.
J Ginseng Res ; 46(4): 572-584, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35818427

ABSTRACT

Background: Huntington's disease (HD) is a neurodegenerative disorder caused by the expansion of trinucleotide CAG repeat in the Huntingtin (Htt) gene. The major pathogenic pathways underlying HD involve the impairment of cellular energy homeostasis and DNA damage in the brain. The protein kinase ataxia-telangiectasia mutated (ATM) is an important regulator of the DNA damage response. ATM is involved in the phosphorylation of AMP-activated protein kinase (AMPK), suggesting that AMPK plays a critical role in response to DNA damage. Herein, we demonstrated that expression of polyQ-expanded mutant Htt (mHtt) enhanced the phosphorylation of ATM. Ginsenoside is the main and most effective component of Panax ginseng. However, the protective effect of a ginsenoside (compound K, CK) in HD remains unclear and warrants further investigation. Methods: This study used the R6/2 transgenic mouse model of HD and performed behavioral tests, survival rate, histological analyses, and immunoblot assays. Results: The systematic administration of CK into R6/2 mice suppressed the activation of ATM/AMPK and reduced neuronal toxicity and mHTT aggregation. Most importantly, CK increased neuronal density and lifespan and improved motor dysfunction in R6/2 mice. Conversely, CK enhanced the expression of Bcl2 protected striatal cells from the toxicity induced by the overactivation of mHtt and AMPK. Conclusions: Thus, the oral administration of CK reduced the disease progression and markedly enhanced lifespan in the transgenic mouse model (R6/2) of HD.

SELECTION OF CITATIONS
SEARCH DETAIL
...