Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36984037

ABSTRACT

To provide the basis for thermal conductivity regulation of vermicular graphite cast iron (VGI), a new theoretical method consisting of shape interpolation, unit cell model and numerical calculation was proposed. Considering the influence of the graphite anisotropy and interfacial contact thermal conductivity (ICTC), the effective thermal conductivity of a series of unit cell models was calculated by numerical calculation based on finite difference. The effects of microstructure on effective thermal conductivity of VGI were studied by shape interpolation. The experimental results were in good agreement with the calculated ones. The effective thermal conductivity of VGI increases in power function with the decrease in graphite shape parameter, and increases linearly with the increase in graphite volume fraction and thermal conductivity of matrix. When the graphite volume fraction increases by 1%, the thermal conductivity of nodular cast iron increases by about 0.18 W/(m·K), while that of gray cast iron increases by about 3 W/(m·K). The thermal conductivity of cast iron has the same sensitivity to the thermal conductivity of matrix regardless of the graphite shape parameter. The thermal conductivity of matrix increased by 15 W/(m·K) and the thermal conductivity of cast iron increased by about 12 W/(m·K). Moreover, the more the graphite shape deviates from the sphere, the greater the enhancement effect of graphite anisotropy on thermal conductivity than the hindrance effect of interface between graphite and matrix. This work can provide guidance for the development of high thermal conductivity VGI and the study of thermal conductivity of composites containing anisotropic dispersed phase particles with complex shapes.

2.
Adv Mater ; 35(16): e2211611, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36739495

ABSTRACT

Group IIIA-VA metal sulfides (GMSs) have attracted increasing attention because of their unique Na-storage mechanisms through combined conversion and alloying reactions, thus delivering large theoretical capacities and low working potentials. However, Na+ diffusion within GMSs anodes leads to severe volume change, generally representing a fundamental limitation to rate capability and cycling stability. Here, monodispersed In6 S7 /nitrogen and sulfur co-doped carbon hollow microspindles (In6 S7 /NSC HMS) are produced by morphology-preserved thermal sulfurization of spindle-like and porous indium-based metal organic frameworks. The resulting In6 S7 /NSC HMS anode exhibits theoretical-value-close specific capacity (546.2 mAh g-1 at 0.1 A g-1 ), ultrahigh rate capability (267.5 mAh g-1 at 30.0 A g-1 ), high initial coulombic efficiency (≈93.5%), and ≈92.6% capacity retention after 4000 cycles. This kinetically favored In6 S7 /NSC HMS anode fills up the kinetics gap with a capacitive porous carbon cathode, enabling a sodium-ion capacitor to deliver an ultrahigh energy density of 136.3 Wh kg-1 and a maximum power density of 47.5 kW kg-1 . The in situ/ex situ analytical techniques and theoretical calculation both show that the robust and fast Na+ charge storage of In6 S7 /NSC HMS arises from the multi-electron redox mechanism, buffered volume expansion, negligible morphological change, and surface-controlled solid-state Na+ transport.

3.
Phys Chem Chem Phys ; 24(32): 19488-19501, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35929486

ABSTRACT

In this work, by combining density functional theory calculations and Monte Carlo simulations with cluster expansion Hamiltonian methods, we investigate the surface aggregation of Pt atoms on the Pt/Ag(111) surface under vacuum conditions and in the presence of CO. The results show the decisive influence of CO-CO interactions and reveal the competition between CO-metal interactions and CO-CO repulsion. Thus, in addition to evidence of reverse Pt segregation caused by CO adsorption, two methods for tuning the surface Pt atomic system synthesis are found, where the surface can be adjusted by tuning the CO coverage to obtain a larger number of monomers (0.25 ML CO coverage) or a pure Pt layer (1 ML coverage) at Pt bulk concentrations above 10%. For highly dilute alloys, the Pt distribution can be controlled by adjusting the concentration. Indeed, for a Pt bulk concentration close to 8% and a CO coverage of about less than 1 ML, between 400 and 600 K, an ordered structure has been observed which maximized the number of Pt monomers and homogeneous distribution on the surface. The overpotential (η) of the ordered Pt3Ag(111) surface is 0.41 V, slightly lower than that of pure Pt(111) (η = 0.43 V), indicating a potential candidate for ORR catalysts with rich active sites and a low overpotential.

4.
Nanomaterials (Basel) ; 12(11)2022 May 25.
Article in English | MEDLINE | ID: mdl-35683658

ABSTRACT

In this article, the behavior of various Pd ensembles on the PdAg(111) surfaces was systematically investigated for oxygen reduction reaction (ORR) intermediates using density functional theory (DFT) simulation. The Pd monomer on the PdAg(111) surface (with a Pd subsurface layer) has the best predicted performance, with a higher limiting potential (0.82 V) than Pt(111) (0.80 V). It could be explained by the subsurface coordination, which was also proven by the analysis of electronic properties. In this case, it is necessary to consider the influence of the near-surface layers when modeling the single-atom alloy (SAA) catalyst processes. Another important advantage of PdAg SAA is that atomic-dispersed Pd as adsorption sites can significantly improve the resistance to CO poisoning. Furthermore, by adjusting the Pd ensembles on the catalyst surface, an exciting ORR catalyst combination with predicted activity and high tolerance to CO poisoning can be designed.

5.
Phys Chem Chem Phys ; 24(18): 10798-10806, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35475428

ABSTRACT

In this paper, the Wulff cluster model which has been proved to successfully describe the melt structure of pure metals, homogenous alloys and eutectic alloys has been extended to an alloy with intermetallic compounds (In50Bi50). According to the cohesive energy and the solid-state XRD patterns, the most possible types of clusters in the melt are Bi and InBi. At relatively high temperatures, the superimposed XRD (simulated) patterns of Bi and InBi clusters are in good agreement with the experimental HTXRD patterns in terms of the position and intensity of the peaks. With the decrease of temperature, there is an obvious deviation in the simulated XRD value at the second peak caused by the nucleation process of Bi clusters, which would be modified by adding simulated XRD patterns of the Bi bulk. The proportion of the superimposed Bi bulk XRD pattern increases with the decrease of temperature suggesting that the nucleation process of the Bi cluster begins at 160 °C.

6.
Phys Chem Chem Phys ; 24(11): 6803-6810, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35244639

ABSTRACT

The structural, electronic and vibrational properties of a water layer on Ag(100) and Ag(511) have been studied by first-principles calculations and ab initio molecular dynamics simulations. The most stable water structure on the Ag(100) and Ag(511) surfaces have been obtained. The AIMD results showed rather high stability of the water layer on the stepped surface at 140 K, indicating a crystal-like structure with long-range ordering. The calculated vibrational spectra at 140 K showed good agreement with the experimental results. On the Ag(100) surface, a red-shift was observed when the temperature increased from 140 K to 300 K caused by the change in the number of H-bonded (HB) hydrogen. On Ag(511), a three-fold splitting of the O-H stretch mode was observed. This can be explained by the special water structure at the stepped Ag surface: the relatively strong water-metal interaction at the step edge and weak water-terrace interaction/strong water-water interaction at the terrace, which can also explain the high stability of the water layer on the Ag(511) surface.

7.
Phys Chem Chem Phys ; 24(4): 2251-2264, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35014663

ABSTRACT

In this work, the surface structure of a PdAg alloy is investigated by cluster expansion (CE) combined Monte Carlo (MC) simulations. All systems with different component proportions show an obvious component segregation corresponding to the depth from the surface. A significant amount of Ag is observed on the first layer, and Pd is concentrated significantly on the second layer. The Pd distribution on the PdAg surfaces is closely related to the temperature and composition ascribed to the concentration and configurational entropy effects, which are explicitly treated in MC simulations. The vacancies mainly distribute separately. The simulation results show good agreement with the experimental evidence. Moreover, we demonstrated a general and highly effective casting combined quenching strategy for controlling the ensemble size and chemical composition of alloy surfaces which could successfully be applied to the large-scale production of SAA.

8.
Nanomaterials (Basel) ; 11(12)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34947530

ABSTRACT

In the present work, density functional theory (DFT) calculations were applied to confirm that the gold carbide previously experimentally synthesized was AuC film. A crucial finding is that these kinds of AuC films are self-folded on the graphite substrate, leading to the formation of a semi-nanotube structure, which significantly diminishes the error between the experimental and simulated lattice constant. The unique characteristic, the spontaneous archlike reconstruction, makes AuC a possible candidate for self-assembled nanotubes. The band structure indicated, in the designed AuC nanotube, a narrow gap semiconductor with a bandgap of 0.14 eV. Both AIMD (at 300 and 450 K) results and phonon spectra showed a rather high stability for the AuC nanotube because a strong chemical bond formed between the Au-5d and C-2p states. The AuC nanotube could become a novel functional material.

9.
Phys Chem Chem Phys ; 23(5): 3606-3614, 2021 Feb 07.
Article in English | MEDLINE | ID: mdl-33523061

ABSTRACT

In the present work, the Wulff cluster model, which has been proved to be successful for pure metals and homogeneous alloys, has been extended to eutectic alloys (Ag-Cu and Al-Si). In our model, the shapes of the clusters in melts were determined by the interfacial energy calculated by density functional theory (DFT) of different facet families based on Wulff theory. The cluster size was given by the pair distribution function (PDF) g(r), which was converted from experimental high-temperature X-ray diffraction (HTXRD). The simulated XRD curves in the high temperature region were in good agreement with the experimental results. For the Al-Si alloy, a deviation of the intensity and position of the second peak near the eutectic temperature was observed. The simulated results after structure and composition modification corresponded to the experimental ones. It indicates that the deviation is mainly related to the significant change of the cluster size during Si clusters' growth processes before nucleation. Differently, there are no such nucleation processes at temperatures near the eutectic point due to the relatively high nucleation barriers of the two components in the Ag-Cu alloy.

SELECTION OF CITATIONS
SEARCH DETAIL
...