Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 30(20): 127419, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32768648

ABSTRACT

Discovery of novel classes of Gram-negative antibiotics with activity against multi-drug resistant infections is a critical unmet need. As an essential member of the lipoprotein biosynthetic pathway, lipoprotein signal peptidase II (LspA) is an attractive target for antibacterial drug discovery, with the natural product inhibitor globomycin offering a modestly-active starting point. Informed by structure-based design, the globomycin depsipeptide was optimized to improve activity against E. coli. Backbone modifications, together with adjustment of physicochemical properties, afforded potent compounds with good in vivo pharmacokinetic profiles. Optimized compounds such as 51 (E. coli MIC 3.1 µM) and 61 (E. coli MIC 0.78 µM) demonstrate broad spectrum activity against gram-negative pathogens and may provide opportunities for future antibiotic discovery.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Peptides/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Molecular Structure , Peptides/chemical synthesis , Peptides/chemistry , Structure-Activity Relationship
2.
J Med Chem ; 59(18): 8345-68, 2016 09 22.
Article in English | MEDLINE | ID: mdl-27541271

ABSTRACT

NAMPT inhibitors may show potential as therapeutics for oncology. Throughout our NAMPT inhibitor program, we found that exposed pyridines or related heterocyclic systems in the left-hand portion of the inhibitors are necessary pharmacophores for potent cellular NAMPT inhibition. However, when combined with a benzyl group in the center of the inhibitors, such pyridine-like moieties also led to consistent and potent inhibition of CYP2C9. In an attempt to reduce CYP2C9 inhibition, a parallel synthesis approach was used to identify central benzyl group replacements with increased Fsp3. A spirocyclic central motif was thus discovered that was combined with left-hand pyridines (or pyridine-like systems) to provide cellularly potent NAMPT inhibitors with minimal CYP2C9 inhibition. Further optimization of potency and ADME properties led to the discovery of compound 68, a highly potent NAMPT inhibitor with outstanding efficacy in a mouse tumor xenograft model and lacking measurable CYP2C9 inhibition at the concentrations tested.


Subject(s)
Cytochrome P-450 CYP2C9/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Pyridines/chemistry , Pyridines/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cytochrome P-450 CYP2C9 Inhibitors/chemistry , Cytochrome P-450 CYP2C9 Inhibitors/pharmacology , Drug Discovery , Enzyme Inhibitors/therapeutic use , Female , Humans , Mice , Mice, Nude , Models, Molecular , Neoplasms/drug therapy , Nicotinamide Phosphoribosyltransferase/metabolism , Pyridines/therapeutic use
3.
Bioorg Med Chem Lett ; 24(3): 954-62, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24433859

ABSTRACT

The fragment-based identification of two novel and potent biochemical inhibitors of the nicotinamide phosphoribosyltransferase (NAMPT) enzyme is described. These compounds (51 and 63) incorporate an amide moiety derived from 3-aminopyridine, and are thus structurally distinct from other known anti-NAMPT agents. Each exhibits potent inhibition of NAMPT biochemical activity (IC50=19 and 15 nM, respectively) as well as robust antiproliferative properties in A2780 cell culture experiments (IC50=121 and 99 nM, respectively). However, additional biological studies indicate that only inhibitor 51 exerts its A2780 cell culture effects via a NAMPT-mediated mechanism. The crystal structures of both 51 and 63 in complex with NAMPT are also independently described.


Subject(s)
Amides/chemical synthesis , Amides/pharmacology , Aminopyridines/chemical synthesis , Cytokines/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Amides/chemistry , Aminopyridines/chemistry , Aminopyridines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Cells, Cultured , Crystallography, X-Ray , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Humans , Inhibitory Concentration 50 , Models, Molecular , Structure-Activity Relationship
4.
J Med Chem ; 57(3): 770-92, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24405419

ABSTRACT

Potent, trans-2-(pyridin-3-yl)cyclopropanecarboxamide-containing inhibitors of the human nicotinamide phosphoribosyltransferase (NAMPT) enzyme were identified using fragment-based screening and structure-based design techniques. Multiple crystal structures were obtained of initial fragment leads, and this structural information was utilized to improve the biochemical and cell-based potency of the associated molecules. Many of the optimized compounds exhibited nanomolar antiproliferative activities against human tumor lines in in vitro cell culture experiments. In a key example, a fragment lead (13, KD = 51 µM) was elaborated into a potent NAMPT inhibitor (39, NAMPT IC50 = 0.0051 µM, A2780 cell culture IC50 = 0.000 49 µM) which demonstrated encouraging in vivo efficacy in an HT-1080 mouse xenograft tumor model.


Subject(s)
Amides/chemical synthesis , Antineoplastic Agents/chemical synthesis , Cyclopropanes/chemical synthesis , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Pyridines/chemical synthesis , Sulfones/chemical synthesis , Amides/chemistry , Amides/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Crystallography, X-Ray , Cyclopropanes/chemistry , Cyclopropanes/pharmacology , Drug Screening Assays, Antitumor , Heterografts , Humans , Mice , Mice, Nude , Models, Molecular , Neoplasm Transplantation , Protein Conformation , Pyridines/chemistry , Pyridines/pharmacology , Stereoisomerism , Structure-Activity Relationship , Sulfones/chemistry , Sulfones/pharmacology
5.
Org Lett ; 8(11): 2373-6, 2006 May 25.
Article in English | MEDLINE | ID: mdl-16706529

ABSTRACT

[reaction: see text] A general and efficient strategy to both aromatic-type and nonaromatic-type erythrinan and homoerythrinan alkaloids has been developed. This approach involves a key two-step sequence, an alkylation of a ketone with various N-substituted iodoacetamides followed by a N-acyliminium ion promoted intramolecular cyclization, and represents one of the shortest routes to erythrinan and homoerythrinan alkaloids. As the application, the formal total synthesis of (+/-)-3-demethoxyerythratidinone and the total synthesis of (+/-)-erysotramidine have been achieved, respectively.


Subject(s)
Alkaloids/chemical synthesis , Heterocyclic Compounds, 4 or More Rings/chemical synthesis , Indole Alkaloids/chemical synthesis , Alkaloids/chemistry , Erythrina/chemistry , Heterocyclic Compounds, 4 or More Rings/chemistry , Indole Alkaloids/chemistry , Molecular Structure , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...